axi: Add AXI to AXI lite adapter module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-08-30 21:11:20 -07:00
parent 94a821192c
commit 0080125120
8 changed files with 1959 additions and 0 deletions

View File

@@ -0,0 +1,5 @@
taxi_axi_axil_adapter.sv
taxi_axi_axil_adapter_wr.sv
taxi_axi_axil_adapter_rd.sv
taxi_axi_if.sv
taxi_axil_if.sv

View File

@@ -0,0 +1,82 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 to AXI4-Lite adapter
*/
module taxi_axi_axil_adapter #
(
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter logic CONVERT_BURST = 1'b1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter logic CONVERT_NARROW_BURST = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.wr_slv s_axi_wr,
taxi_axi_if.rd_slv s_axi_rd,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.wr_mst m_axil_wr,
taxi_axil_if.rd_mst m_axil_rd
);
taxi_axi_axil_adapter_wr #(
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST)
)
axi_axil_adapter_wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_wr(s_axi_wr),
/*
* AXI4-Lite master interface
*/
.m_axil_wr(m_axil_wr)
);
taxi_axi_axil_adapter_rd #(
.CONVERT_BURST(CONVERT_BURST),
.CONVERT_NARROW_BURST(CONVERT_NARROW_BURST)
)
axi_axil_adapter_rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_rd(s_axi_rd),
/*
* AXI4-Lite master interface
*/
.m_axil_rd(m_axil_rd)
);
endmodule
`resetall

View File

@@ -0,0 +1,663 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 to AXI4-Lite adapter (read)
*/
module taxi_axi_axil_adapter_rd #
(
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter logic CONVERT_BURST = 1'b1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter logic CONVERT_NARROW_BURST = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.rd_slv s_axi_rd,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.rd_mst m_axil_rd
);
// extract parameters
localparam AXI_DATA_W = s_axi_rd.DATA_W;
localparam ADDR_W = s_axi_rd.ADDR_W;
localparam CL_ADDR_W = $clog2(ADDR_W);
localparam AXI_STRB_W = s_axi_rd.STRB_W;
localparam AXI_ID_W = s_axi_rd.ID_W;
localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axil_rd.ARUSER_EN;
localparam ARUSER_W = s_axi_rd.ARUSER_W;
localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axil_rd.RUSER_EN;
localparam RUSER_W = s_axi_rd.RUSER_W;
localparam AXIL_DATA_W = m_axil_rd.DATA_W;
localparam AXIL_STRB_W = m_axil_rd.STRB_W;
localparam AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_W);
localparam AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_W);
localparam AXI_BYTE_LANES = AXI_STRB_W;
localparam AXIL_BYTE_LANES = AXIL_STRB_W;
localparam AXI_BYTE_SIZE = AXI_DATA_W/AXI_BYTE_LANES;
localparam AXIL_BYTE_SIZE = AXIL_DATA_W/AXIL_BYTE_LANES;
localparam logic [2:0] AXI_BURST_SIZE = 3'($clog2(AXI_BYTE_LANES));
localparam logic [2:0] AXIL_BURST_SIZE = 3'($clog2(AXIL_BYTE_LANES));
// check configuration
if (AXI_BYTE_SIZE * AXI_STRB_W != AXI_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (AXIL_BYTE_SIZE * AXIL_STRB_W != AXIL_DATA_W)
$fatal(0, "Error: AXI lite master interface data width not evenly divisible (instance %m)");
if (AXI_BYTE_SIZE != AXIL_BYTE_SIZE)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(AXI_BYTE_LANES) != AXI_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(AXIL_BYTE_LANES) != AXIL_BYTE_LANES)
$fatal(0, "Error: AXI lite master interface byte lane count must be even power of two (instance %m)");
if (AXIL_BYTE_LANES == AXI_BYTE_LANES) begin : translate
// same width; translate
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = 2'd0, resp_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [7:0] master_burst_reg = 8'd0, master_burst_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [AXI_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
logic [AXI_DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
logic [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_rd.arready = s_axi_arready_reg;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_rd.arvalid;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axil_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
m_axil_arprot_next = s_axi_rd.arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer read data
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rd.rdata;
s_axi_rresp_next = m_axil_rd.rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end else if (AXIL_BYTE_LANES > AXI_BYTE_LANES) begin : upsize
// output is wider; upsize
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = 2'd0, resp_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [7:0] master_burst_reg = 8'd0, master_burst_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [AXI_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
logic [AXI_DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
logic [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_rd.arready = s_axi_arready_reg;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_rd.arvalid;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axil_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
if (CONVERT_BURST && s_axi_rd.arcache[1] && (CONVERT_NARROW_BURST || s_axi_rd.arsize == AXI_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_rd.arsize;
state_next = STATE_DATA;
end
m_axil_arprot_next = s_axi_rd.arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rd.rdata[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_W +: AXI_DATA_W];
s_axi_rresp_next = m_axil_rd.rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
s_axi_rid_next = id_reg;
data_next = m_axil_rd.rdata;
resp_next = m_axil_rd.rresp;
s_axi_rdata_next = m_axil_rd.rdata[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_W +: AXI_DATA_W];
s_axi_rresp_next = m_axil_rd.rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_arready_next = !m_axil_rd.arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axil_rready_next = 1'b0;
if (s_axi_rd.rready || !s_axi_rd.rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_reg[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_W +: AXI_DATA_W];
s_axi_rresp_next = resp_reg;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axil_rd.arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = 2'd0, resp_next;
logic [7:0] burst_reg = '0, burst_next;
logic [2:0] burst_size_reg = '0, burst_size_next;
logic [15:0] master_burst_reg = '0, master_burst_next;
logic [2:0] master_burst_size_reg = '0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [AXI_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
logic [AXI_DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
logic [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_rd.arready = s_axi_arready_reg;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
// master output is narrower; merge reads and possibly split burst
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_rd.arvalid;
resp_next = 2'd0;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axil_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
if (s_axi_rd.arsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
master_burst_next = 16'({8'd0, s_axi_rd.arlen} << 3'(s_axi_rd.arsize-AXIL_BURST_SIZE)) | 16'(8'(8'(~s_axi_rd.araddr) & 8'(8'hff >> (8-s_axi_rd.arsize))) >> AXIL_BURST_SIZE);
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_next = 16'(s_axi_rd.arlen);
master_burst_size_next = s_axi_rd.arsize;
end
m_axil_arprot_next = s_axi_rd.arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
data_next[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = m_axil_rd.rdata;
if (m_axil_rd.rresp != 0) begin
resp_next = m_axil_rd.rresp;
end
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_next;
s_axi_rresp_next = resp_next;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
m_axil_araddr_next = addr_next;
if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin
burst_next = burst_reg - 1;
s_axi_rvalid_next = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_rvalid_next = 1'b1;
s_axi_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end
endmodule
`resetall

View File

@@ -0,0 +1,773 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 to AXI4-Lite adapter (write)
*/
module taxi_axi_axil_adapter_wr #
(
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter logic CONVERT_BURST = 1'b1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter logic CONVERT_NARROW_BURST = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.wr_slv s_axi_wr,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.wr_mst m_axil_wr
);
// extract parameters
localparam AXI_DATA_W = s_axi_wr.DATA_W;
localparam ADDR_W = s_axi_wr.ADDR_W;
localparam CL_ADDR_W = $clog2(ADDR_W);
localparam AXI_STRB_W = s_axi_wr.STRB_W;
localparam AXI_ID_W = s_axi_wr.ID_W;
localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axil_wr.AWUSER_EN;
localparam AWUSER_W = s_axi_wr.AWUSER_W;
localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axil_wr.WUSER_EN;
localparam WUSER_W = s_axi_wr.WUSER_W;
localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axil_wr.BUSER_EN;
localparam BUSER_W = s_axi_wr.BUSER_W;
localparam AXIL_DATA_W = m_axil_wr.DATA_W;
localparam AXIL_STRB_W = m_axil_wr.STRB_W;
localparam AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_W);
localparam AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_W);
localparam AXI_BYTE_LANES = AXI_STRB_W;
localparam AXIL_BYTE_LANES = AXIL_STRB_W;
localparam AXI_BYTE_SIZE = AXI_DATA_W/AXI_BYTE_LANES;
localparam AXIL_BYTE_SIZE = AXIL_DATA_W/AXIL_BYTE_LANES;
localparam logic [2:0] AXI_BURST_SIZE = 3'($clog2(AXI_BYTE_LANES));
localparam logic [2:0] AXIL_BURST_SIZE = 3'($clog2(AXIL_BYTE_LANES));
// check configuration
if (AXI_BYTE_SIZE * AXI_STRB_W != AXI_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (AXIL_BYTE_SIZE * AXIL_STRB_W != AXIL_DATA_W)
$fatal(0, "Error: AXI lite master interface data width not evenly divisible (instance %m)");
if (AXI_BYTE_SIZE != AXIL_BYTE_SIZE)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(AXI_BYTE_LANES) != AXI_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(AXIL_BYTE_LANES) != AXIL_BYTE_LANES)
$fatal(0, "Error: AXI lite master interface byte lane count must be even power of two (instance %m)");
if (AXIL_BYTE_LANES == AXI_BYTE_LANES) begin : translate
// same width; translate
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_RESP = 2'd2;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [STRB_W-1:0] strb_reg = '0, strb_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic burst_active_reg = 1'b0, burst_active_next;
logic convert_burst_reg = 1'b0, convert_burst_next;
logic first_transfer_reg = 1'b0, first_transfer_next;
logic last_seg_reg = 1'b0, last_seg_next;
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
logic s_axi_wready_reg = 1'b0, s_axi_wready_next;
logic [AXI_ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next;
logic [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next;
logic [2:0] m_axil_awprot_reg = 3'd0, m_axil_awprot_next;
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
logic [AXIL_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next;
logic [AXIL_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next;
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
logic m_axil_bready_reg = 1'b0, m_axil_bready_next;
assign s_axi_wr.awready = s_axi_awready_reg;
assign s_axi_wr.wready = s_axi_wready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
assign m_axil_wr.awprot = m_axil_awprot_reg;
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
assign m_axil_wr.wdata = m_axil_wdata_reg;
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
assign m_axil_wr.bready = m_axil_bready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
convert_burst_next = convert_burst_reg;
first_transfer_next = first_transfer_reg;
last_seg_next = last_seg_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready;
m_axil_bready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_wr.awvalid;
first_transfer_next = 1'b1;
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_wr.awid;
m_axil_awaddr_next = s_axi_wr.awaddr;
addr_next = s_axi_wr.awaddr;
burst_next = s_axi_wr.awlen;
burst_size_next = s_axi_wr.awsize;
burst_active_next = 1'b1;
m_axil_awprot_next = s_axi_wr.awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wr.wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = !m_axil_wr.wvalid;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
m_axil_wdata_next = s_axi_wr.wdata;
m_axil_wstrb_next = s_axi_wr.wstrb;
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
if (m_axil_wr.bready && m_axil_wr.bvalid) begin
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
first_transfer_next = 1'b0;
if (first_transfer_reg || m_axil_wr.bresp != 0) begin
s_axi_bresp_next = m_axil_wr.bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new AXI lite write
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wr.wvalid;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_wr.awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
default: begin
// invalid state
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
convert_burst_reg <= convert_burst_next;
first_transfer_reg <= first_transfer_next;
last_seg_reg <= last_seg_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
end
end
end else if (AXIL_BYTE_LANES > AXI_BYTE_LANES) begin : upsize
// output is wider; upsize
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [STRB_W-1:0] strb_reg = '0, strb_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic burst_active_reg = 1'b0, burst_active_next;
logic convert_burst_reg = 1'b0, convert_burst_next;
logic first_transfer_reg = 1'b0, first_transfer_next;
logic last_seg_reg = 1'b0, last_seg_next;
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
logic s_axi_wready_reg = 1'b0, s_axi_wready_next;
logic [AXI_ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next;
logic [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next;
logic [2:0] m_axil_awprot_reg = 3'd0, m_axil_awprot_next;
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
logic [AXIL_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next;
logic [AXIL_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next;
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
logic m_axil_bready_reg = 1'b0, m_axil_bready_next;
assign s_axi_wr.awready = s_axi_awready_reg;
assign s_axi_wr.wready = s_axi_wready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
assign m_axil_wr.awprot = m_axil_awprot_reg;
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
assign m_axil_wr.wdata = m_axil_wdata_reg;
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
assign m_axil_wr.bready = m_axil_bready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
convert_burst_next = convert_burst_reg;
first_transfer_next = first_transfer_reg;
last_seg_next = last_seg_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready;
m_axil_bready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_wr.awvalid;
first_transfer_next = 1'b1;
strb_next = '0;
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_wr.awid;
m_axil_awaddr_next = s_axi_wr.awaddr;
addr_next = s_axi_wr.awaddr;
burst_next = s_axi_wr.awlen;
burst_size_next = s_axi_wr.awsize;
if (CONVERT_BURST && s_axi_wr.awcache[1] && (CONVERT_NARROW_BURST || s_axi_wr.awsize == AXI_BURST_SIZE)) begin
// merge writes
// require CONVERT_BURST and awcache[1] set
convert_burst_next = 1'b1;
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_2;
end else begin
// output narrow burst
convert_burst_next = 1'b0;
master_burst_size_next = s_axi_wr.awsize;
state_next = STATE_DATA;
end
m_axil_awprot_next = s_axi_wr.awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wr.wvalid;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = !m_axil_wr.wvalid || m_axil_wr.wready;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
m_axil_wdata_next = {(AXIL_BYTE_LANES/AXI_BYTE_LANES){s_axi_wr.wdata}};
m_axil_wstrb_next = '0;
m_axil_wstrb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_STRB_W +: AXI_STRB_W] = s_axi_wr.wstrb;
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = !m_axil_wr.wvalid;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (integer i = 0; i < AXI_BYTE_LANES; i = i + 1) begin
if (s_axi_wr.wstrb[i]) begin
data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEG_DATA_W+i*AXIL_BYTE_SIZE +: AXIL_BYTE_SIZE] = s_axi_wr.wdata[i*AXIL_BYTE_SIZE +: AXIL_BYTE_SIZE];
strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEG_STRB_W+i] = 1'b1;
end
end
end else begin
data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = s_axi_wr.wdata;
strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEG_STRB_W +: SEG_STRB_W] = s_axi_wr.wstrb;
end
m_axil_wdata_next = data_next;
m_axil_wstrb_next = strb_next;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0 || addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
strb_next = '0;
m_axil_wvalid_next = 1'b1;
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
if (m_axil_wr.bready && m_axil_wr.bvalid) begin
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
first_transfer_next = 1'b0;
if (first_transfer_reg || m_axil_wr.bresp != 0) begin
s_axi_bresp_next = m_axil_wr.bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new AXI lite write
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wr.wvalid || m_axil_wr.wready;
if (convert_burst_reg) begin
state_next = STATE_DATA_2;
end else begin
state_next = STATE_DATA;
end
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_wr.awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
convert_burst_reg <= convert_burst_next;
first_transfer_reg <= first_transfer_next;
last_seg_reg <= last_seg_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [STRB_W-1:0] strb_reg = '0, strb_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic burst_active_reg = 1'b0, burst_active_next;
logic convert_burst_reg = 1'b0, convert_burst_next;
logic first_transfer_reg = 1'b0, first_transfer_next;
logic last_seg_reg = 1'b0, last_seg_next;
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
logic s_axi_wready_reg = 1'b0, s_axi_wready_next;
logic [AXI_ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next;
logic [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next;
logic [2:0] m_axil_awprot_reg = 3'd0, m_axil_awprot_next;
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
logic [AXIL_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next;
logic [AXIL_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next;
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
logic m_axil_bready_reg = 1'b0, m_axil_bready_next;
assign s_axi_wr.awready = s_axi_awready_reg;
assign s_axi_wr.wready = s_axi_wready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
assign m_axil_wr.awprot = m_axil_awprot_reg;
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
assign m_axil_wr.wdata = m_axil_wdata_reg;
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
assign m_axil_wr.bready = m_axil_bready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
convert_burst_next = convert_burst_reg;
first_transfer_next = first_transfer_reg;
last_seg_next = last_seg_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready;
m_axil_bready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_wr.awvalid;
first_transfer_next = 1'b1;
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_wr.awid;
m_axil_awaddr_next = s_axi_wr.awaddr;
addr_next = s_axi_wr.awaddr;
burst_next = s_axi_wr.awlen;
burst_size_next = s_axi_wr.awsize;
burst_active_next = 1'b1;
if (s_axi_wr.awsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_size_next = s_axi_wr.awsize;
end
m_axil_awprot_next = s_axi_wr.awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wr.wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = !m_axil_wr.wvalid;
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
data_next = s_axi_wr.wdata;
strb_next = s_axi_wr.wstrb;
m_axil_wdata_next = s_axi_wr.wdata[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_W +: AXIL_DATA_W];
m_axil_wstrb_next = s_axi_wr.wstrb[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_W +: AXIL_STRB_W];
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
last_seg_next = addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)];
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (!m_axil_wr.wvalid || m_axil_wr.wready) begin
m_axil_wdata_next = data_reg[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_W +: AXIL_DATA_W];
m_axil_wstrb_next = strb_reg[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_W +: AXIL_STRB_W];
m_axil_wvalid_next = 1'b1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
last_seg_next = addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)];
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_wr.bvalid && !m_axil_wr.awvalid;
if (m_axil_wr.bready && m_axil_wr.bvalid) begin
first_transfer_next = 1'b0;
m_axil_awaddr_next = addr_reg;
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
if (first_transfer_reg || m_axil_wr.bresp != 0) begin
s_axi_bresp_next = m_axil_wr.bresp;
end
if (burst_active_reg || !last_seg_reg) begin
// burst on slave interface still active; start new burst
m_axil_awvalid_next = 1'b1;
if (last_seg_reg) begin
s_axi_wready_next = !m_axil_wr.wvalid;
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_wr.awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
convert_burst_reg <= convert_burst_next;
first_transfer_reg <= first_transfer_next;
last_seg_reg <= last_seg_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
end
end
end
endmodule
`resetall