Files
taxi/src/axi/rtl/taxi_axi_axil_adapter_rd.sv
2025-08-30 21:11:20 -07:00

664 lines
26 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 to AXI4-Lite adapter (read)
*/
module taxi_axi_axil_adapter_rd #
(
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter logic CONVERT_BURST = 1'b1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter logic CONVERT_NARROW_BURST = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.rd_slv s_axi_rd,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.rd_mst m_axil_rd
);
// extract parameters
localparam AXI_DATA_W = s_axi_rd.DATA_W;
localparam ADDR_W = s_axi_rd.ADDR_W;
localparam CL_ADDR_W = $clog2(ADDR_W);
localparam AXI_STRB_W = s_axi_rd.STRB_W;
localparam AXI_ID_W = s_axi_rd.ID_W;
localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axil_rd.ARUSER_EN;
localparam ARUSER_W = s_axi_rd.ARUSER_W;
localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axil_rd.RUSER_EN;
localparam RUSER_W = s_axi_rd.RUSER_W;
localparam AXIL_DATA_W = m_axil_rd.DATA_W;
localparam AXIL_STRB_W = m_axil_rd.STRB_W;
localparam AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_W);
localparam AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_W);
localparam AXI_BYTE_LANES = AXI_STRB_W;
localparam AXIL_BYTE_LANES = AXIL_STRB_W;
localparam AXI_BYTE_SIZE = AXI_DATA_W/AXI_BYTE_LANES;
localparam AXIL_BYTE_SIZE = AXIL_DATA_W/AXIL_BYTE_LANES;
localparam logic [2:0] AXI_BURST_SIZE = 3'($clog2(AXI_BYTE_LANES));
localparam logic [2:0] AXIL_BURST_SIZE = 3'($clog2(AXIL_BYTE_LANES));
// check configuration
if (AXI_BYTE_SIZE * AXI_STRB_W != AXI_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (AXIL_BYTE_SIZE * AXIL_STRB_W != AXIL_DATA_W)
$fatal(0, "Error: AXI lite master interface data width not evenly divisible (instance %m)");
if (AXI_BYTE_SIZE != AXIL_BYTE_SIZE)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(AXI_BYTE_LANES) != AXI_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(AXIL_BYTE_LANES) != AXIL_BYTE_LANES)
$fatal(0, "Error: AXI lite master interface byte lane count must be even power of two (instance %m)");
if (AXIL_BYTE_LANES == AXI_BYTE_LANES) begin : translate
// same width; translate
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = 2'd0, resp_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [7:0] master_burst_reg = 8'd0, master_burst_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [AXI_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
logic [AXI_DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
logic [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_rd.arready = s_axi_arready_reg;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_rd.arvalid;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axil_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
m_axil_arprot_next = s_axi_rd.arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer read data
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rd.rdata;
s_axi_rresp_next = m_axil_rd.rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end else if (AXIL_BYTE_LANES > AXI_BYTE_LANES) begin : upsize
// output is wider; upsize
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = 2'd0, resp_next;
logic [7:0] burst_reg = 8'd0, burst_next;
logic [2:0] burst_size_reg = 3'd0, burst_size_next;
logic [7:0] master_burst_reg = 8'd0, master_burst_next;
logic [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [AXI_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
logic [AXI_DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
logic [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_rd.arready = s_axi_arready_reg;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_rd.arvalid;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axil_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
if (CONVERT_BURST && s_axi_rd.arcache[1] && (CONVERT_NARROW_BURST || s_axi_rd.arsize == AXI_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_rd.arsize;
state_next = STATE_DATA;
end
m_axil_arprot_next = s_axi_rd.arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rd.rdata[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_W +: AXI_DATA_W];
s_axi_rresp_next = m_axil_rd.rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
s_axi_rid_next = id_reg;
data_next = m_axil_rd.rdata;
resp_next = m_axil_rd.rresp;
s_axi_rdata_next = m_axil_rd.rdata[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_W +: AXI_DATA_W];
s_axi_rresp_next = m_axil_rd.rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_arready_next = !m_axil_rd.arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axil_rready_next = 1'b0;
if (s_axi_rd.rready || !s_axi_rd.rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_reg[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_W +: AXI_DATA_W];
s_axi_rresp_next = resp_reg;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axil_rd.arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam EXPAND = AXIL_BYTE_LANES > AXI_BYTE_LANES;
localparam DATA_W = EXPAND ? AXIL_DATA_W : AXI_DATA_W;
localparam STRB_W = EXPAND ? AXIL_STRB_W : AXI_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (AXIL_BYTE_LANES / AXI_BYTE_LANES) : (AXI_BYTE_LANES / AXIL_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic [AXI_ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = 2'd0, resp_next;
logic [7:0] burst_reg = '0, burst_next;
logic [2:0] burst_size_reg = '0, burst_size_next;
logic [15:0] master_burst_reg = '0, master_burst_next;
logic [2:0] master_burst_size_reg = '0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [AXI_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
logic [AXI_DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
logic [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_rd.arready = s_axi_arready_reg;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
// master output is narrower; merge reads and possibly split burst
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_rd.arvalid;
resp_next = 2'd0;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axil_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
if (s_axi_rd.arsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
master_burst_next = 16'({8'd0, s_axi_rd.arlen} << 3'(s_axi_rd.arsize-AXIL_BURST_SIZE)) | 16'(8'(8'(~s_axi_rd.araddr) & 8'(8'hff >> (8-s_axi_rd.arsize))) >> AXIL_BURST_SIZE);
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_next = 16'(s_axi_rd.arlen);
master_burst_size_next = s_axi_rd.arsize;
end
m_axil_arprot_next = s_axi_rd.arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rd.rvalid && !m_axil_rd.arvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
data_next[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = m_axil_rd.rdata;
if (m_axil_rd.rresp != 0) begin
resp_next = m_axil_rd.rresp;
end
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_next;
s_axi_rresp_next = resp_next;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
m_axil_araddr_next = addr_next;
if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin
burst_next = burst_reg - 1;
s_axi_rvalid_next = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_rvalid_next = 1'b1;
s_axi_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end
endmodule
`resetall