axi: Add AXI lite interconnect module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-11-11 10:20:26 -08:00
parent 3519abbee5
commit 34dd338acf
8 changed files with 1503 additions and 0 deletions

View File

@@ -39,6 +39,7 @@ To facilitate the dual-license model, contributions to the project can only be a
* SV interface for AXI lite
* AXI lite to AXI adapter
* AXI lite to APB adapter
* Interconnect
* Register slice
* Width converter
* Single-port RAM

View File

@@ -0,0 +1,6 @@
taxi_axil_interconnect.sv
taxi_axil_interconnect_rd.sv
taxi_axil_interconnect_wr.sv
taxi_axil_if.sv
../lib/taxi/src/prim/rtl/taxi_arbiter.sv
../lib/taxi/src/prim/rtl/taxi_penc.sv

View File

@@ -0,0 +1,119 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite interconnect
*/
module taxi_axil_interconnect #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_RD = {M_COUNT{{S_COUNT{1'b1}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_WR = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.wr_slv s_axil_wr[S_COUNT],
taxi_axil_if.rd_slv s_axil_rd[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.wr_mst m_axil_wr[M_COUNT],
taxi_axil_if.rd_mst m_axil_rd[M_COUNT]
);
taxi_axil_interconnect_wr #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_WR),
.M_SECURE(M_SECURE)
)
wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-lite slave interfaces
*/
.s_axil_wr(s_axil_wr),
/*
* AXI4-lite master interfaces
*/
.m_axil_wr(m_axil_wr)
);
taxi_axil_interconnect_rd #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_RD),
.M_SECURE(M_SECURE)
)
rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-lite slave interfaces
*/
.s_axil_rd(s_axil_rd),
/*
* AXI4-lite master interfaces
*/
.m_axil_rd(m_axil_rd)
);
endmodule
`resetall

View File

@@ -0,0 +1,437 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite interconnect (read)
*/
module taxi_axil_interconnect_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// Number of regions per master interface
parameter M_REGIONS = 1,
// TODO fix parametrization once verilator issue 5890 is fixed
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.rd_slv s_axil_rd[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.rd_mst m_axil_rd[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axil_rd.DATA_W;
localparam S_ADDR_W = s_axil_rd.ADDR_W;
localparam STRB_W = s_axil_rd.STRB_W;
localparam logic ARUSER_EN = s_axil_rd.ARUSER_EN && m_axil_rd.ARUSER_EN;
localparam ARUSER_W = s_axil_rd.ARUSER_W;
localparam logic RUSER_EN = s_axil_rd.RUSER_EN && m_axil_rd.RUSER_EN;
localparam RUSER_W = s_axil_rd.RUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
logic [ADDR_W-1:0] width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = 0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (s_axil_rd.ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axil_rd.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axil_rd.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
initial begin
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
/* verilator lint_off UNSIGNED */
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
/* verilator lint_on UNSIGNED */
end
$display("Addressing configuration for axil_interconnect instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [1:0]
STATE_IDLE = 2'd0,
STATE_DECODE = 2'd1,
STATE_READ = 2'd2,
STATE_WAIT_IDLE = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic match;
logic [CL_M_COUNT_INT-1:0] m_select_reg = '0, m_select_next;
logic [ADDR_W-1:0] axil_araddr_reg = '0, axil_araddr_next;
logic axil_araddr_valid_reg = 1'b0, axil_araddr_valid_next;
logic [2:0] axil_arprot_reg = 3'b000, axil_arprot_next;
logic [ARUSER_W-1:0] axil_aruser_reg = '0, axil_aruser_next;
logic [DATA_W-1:0] axil_rdata_reg = '0, axil_rdata_next;
logic [1:0] axil_rresp_reg = 2'b00, axil_rresp_next;
logic [RUSER_W-1:0] axil_ruser_reg = '0, axil_ruser_next;
logic [S_COUNT-1:0] s_axil_arready_reg = '0, s_axil_arready_next;
logic [S_COUNT-1:0] s_axil_rvalid_reg = '0, s_axil_rvalid_next;
logic [M_COUNT-1:0] m_axil_arvalid_reg = '0, m_axil_arvalid_next;
logic [M_COUNT-1:0] m_axil_rready_reg = '0, m_axil_rready_next;
// unpack interface array
wire [ADDR_W-1:0] s_axil_araddr[S_COUNT];
wire [2:0] s_axil_arprot[S_COUNT];
wire [ARUSER_W-1:0] s_axil_aruser[S_COUNT];
wire [S_COUNT-1:0] s_axil_arvalid;
wire [S_COUNT-1:0] s_axil_rready;
wire [M_COUNT-1:0] m_axil_arready;
wire [DATA_W-1:0] m_axil_rdata[M_COUNT];
wire [1:0] m_axil_rresp[M_COUNT];
wire [RUSER_W-1:0] m_axil_ruser[M_COUNT];
wire [M_COUNT-1:0] m_axil_rvalid;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axil_araddr[n] = s_axil_rd[n].araddr;
assign s_axil_arprot[n] = s_axil_rd[n].arprot;
assign s_axil_aruser[n] = s_axil_rd[n].aruser;
assign s_axil_arvalid[n] = s_axil_rd[n].arvalid;
assign s_axil_rd[n].arready = s_axil_arready_reg[n];
assign s_axil_rd[n].rdata = axil_rdata_reg;
assign s_axil_rd[n].rresp = axil_rresp_reg;
assign s_axil_rd[n].ruser = RUSER_EN ? axil_ruser_reg : '0;
assign s_axil_rd[n].rvalid = s_axil_rvalid_reg[n];
assign s_axil_rready[n] = s_axil_rd[n].rready;
end
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign m_axil_rd[n].araddr = axil_araddr_reg;
assign m_axil_rd[n].arprot = axil_arprot_reg;
assign m_axil_rd[n].aruser = ARUSER_EN ? axil_aruser_reg : '0;
assign m_axil_rd[n].arvalid = m_axil_arvalid_reg[n];
assign m_axil_arready[n] = m_axil_rd[n].arready;
assign m_axil_rdata[n] = m_axil_rd[n].rdata;
assign m_axil_rresp[n] = m_axil_rd[n].rresp;
assign m_axil_ruser[n] = m_axil_rd[n].ruser;
assign m_axil_rvalid[n] = m_axil_rd[n].rvalid;
assign m_axil_rd[n].rready = m_axil_rready_reg[n];
end
// slave side mux
wire [CL_S_COUNT_INT-1:0] s_select;
wire [ADDR_W-1:0] current_s_axil_araddr = s_axil_araddr[s_select];
wire [2:0] current_s_axil_arprot = s_axil_arprot[s_select];
wire [ARUSER_W-1:0] current_s_axil_aruser = s_axil_aruser[s_select];
wire current_s_axil_arvalid = s_axil_arvalid[s_select];
wire current_s_axil_rready = s_axil_rready[s_select];
// master side mux
wire current_m_axil_arready = m_axil_arready[m_select_reg];
wire [DATA_W-1:0] current_m_axil_rdata = m_axil_rdata[m_select_reg];
wire [1:0] current_m_axil_rresp = m_axil_rresp[m_select_reg];
wire [RUSER_W-1:0] current_m_axil_ruser = m_axil_ruser[m_select_reg];
wire current_m_axil_rvalid = m_axil_rvalid[m_select_reg];
// arbiter instance
wire [S_COUNT-1:0] req;
wire [S_COUNT-1:0] ack;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT_INT-1:0] grant_index;
assign s_select = grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
arb_inst (
.clk(clk),
.rst(rst),
.req(req),
.ack(ack),
.grant(grant),
.grant_valid(grant_valid),
.grant_index(grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (req) begin
grant_valid_reg <= 1'b1;
end
if (ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign grant_valid = grant_valid_reg;
assign grant = '1;
assign grant_index = '0;
end
// req generation
assign req = s_axil_arvalid;
assign ack = grant & s_axil_rvalid_reg & s_axil_rready;
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
m_select_next = m_select_reg;
axil_araddr_next = axil_araddr_reg;
axil_araddr_valid_next = axil_araddr_valid_reg;
axil_arprot_next = axil_arprot_reg;
axil_aruser_next = axil_aruser_reg;
axil_rdata_next = axil_rdata_reg;
axil_rresp_next = axil_rresp_reg;
axil_ruser_next = axil_ruser_reg;
s_axil_arready_next = '0;
s_axil_rvalid_next = s_axil_rvalid_reg & ~s_axil_rready;
m_axil_arvalid_next = m_axil_arvalid_reg & ~m_axil_arready;
m_axil_rready_next = '0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for arbitration
axil_araddr_valid_next = 1'b1;
axil_araddr_next = current_s_axil_araddr;
axil_arprot_next = current_s_axil_arprot;
axil_aruser_next = current_s_axil_aruser;
if (grant_valid) begin
s_axil_arready_next[s_select] = 1'b1;
state_next = STATE_DECODE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
// decode state; determine master interface
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !axil_arprot_reg[1]) && M_CONNECT_INT[i][s_select] && (axil_araddr_reg >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = CL_M_COUNT_INT'(i);
match = 1'b1;
end
end
end
axil_rdata_next = '0;
axil_rresp_next = 2'b11;
if (match) begin
m_axil_rready_next[m_select_next] = 1'b1;
state_next = STATE_READ;
end else begin
// no match; return decode error
s_axil_rvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end
end
STATE_READ: begin
// read state; store and forward read response
m_axil_rready_next[m_select_reg] = 1'b1;
if (axil_araddr_valid_reg) begin
m_axil_arvalid_next[m_select_reg] = 1'b1;
end
axil_araddr_valid_next = 1'b0;
if (m_axil_rready_reg != 0 && current_m_axil_rvalid) begin
m_axil_rready_next[m_select_reg] = 1'b0;
axil_rdata_next = current_m_axil_rdata;
axil_rresp_next = current_m_axil_rresp;
axil_ruser_next = current_m_axil_ruser;
s_axil_rvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_READ;
end
end
STATE_WAIT_IDLE: begin
// wait for idle state; wait until grant valid is deasserted
if (grant_valid == 0 || ack != 0) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_IDLE;
end
end
default: begin
// invalid state
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
m_select_reg <= m_select_next;
axil_araddr_reg <= axil_araddr_next;
axil_araddr_valid_reg <= axil_araddr_valid_next;
axil_arprot_reg <= axil_arprot_next;
axil_aruser_reg <= axil_aruser_next;
axil_rdata_reg <= axil_rdata_next;
axil_rresp_reg <= axil_rresp_next;
axil_ruser_reg <= axil_ruser_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_arready_reg <= '0;
s_axil_rvalid_reg <= '0;
m_axil_arvalid_reg <= '0;
m_axil_rready_reg <= '0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,502 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite interconnect (write)
*/
module taxi_axil_interconnect_wr #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// Number of regions per master interface
parameter M_REGIONS = 1,
// TODO fix parametrization once verilator issue 5890 is fixed
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.wr_slv s_axil_wr[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.wr_mst m_axil_wr[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axil_wr.DATA_W;
localparam S_ADDR_W = s_axil_wr.ADDR_W;
localparam STRB_W = s_axil_wr.STRB_W;
localparam logic AWUSER_EN = s_axil_wr.AWUSER_EN && m_axil_wr.AWUSER_EN;
localparam AWUSER_W = s_axil_wr.AWUSER_W;
localparam logic WUSER_EN = s_axil_wr.WUSER_EN && m_axil_wr.WUSER_EN;
localparam WUSER_W = s_axil_wr.WUSER_W;
localparam logic BUSER_EN = s_axil_wr.BUSER_EN && m_axil_wr.BUSER_EN;
localparam BUSER_W = s_axil_wr.BUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
logic [ADDR_W-1:0] width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = 0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (s_axil_wr.ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axil_wr.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axil_wr.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
initial begin
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
/* verilator lint_off UNSIGNED */
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
/* verilator lint_on UNSIGNED */
end
$display("Addressing configuration for axil_interconnect instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [2:0]
STATE_IDLE = 3'd0,
STATE_DECODE = 3'd1,
STATE_WRITE = 3'd2,
STATE_WRITE_RESP = 3'd3,
STATE_WRITE_DROP = 3'd4,
STATE_WAIT_IDLE = 3'd5;
logic [2:0] state_reg = STATE_IDLE, state_next;
logic match;
logic [CL_M_COUNT_INT-1:0] m_select_reg = '0, m_select_next;
logic [ADDR_W-1:0] axil_awaddr_reg = '0, axil_awaddr_next;
logic axil_awaddr_valid_reg = 1'b0, axil_awaddr_valid_next;
logic [2:0] axil_awprot_reg = 3'b000, axil_awprot_next;
logic [AWUSER_W-1:0] axil_awuser_reg = '0, axil_awuser_next;
logic [DATA_W-1:0] axil_wdata_reg = '0, axil_wdata_next;
logic [STRB_W-1:0] axil_wstrb_reg = '0, axil_wstrb_next;
logic [WUSER_W-1:0] axil_wuser_reg = '0, axil_wuser_next;
logic [1:0] axil_bresp_reg = 2'b00, axil_bresp_next;
logic [BUSER_W-1:0] axil_buser_reg = '0, axil_buser_next;
logic [S_COUNT-1:0] s_axil_awready_reg = '0, s_axil_awready_next;
logic [S_COUNT-1:0] s_axil_wready_reg = '0, s_axil_wready_next;
logic [S_COUNT-1:0] s_axil_bvalid_reg = '0, s_axil_bvalid_next;
logic [M_COUNT-1:0] m_axil_awvalid_reg = '0, m_axil_awvalid_next;
logic [M_COUNT-1:0] m_axil_wvalid_reg = '0, m_axil_wvalid_next;
logic [M_COUNT-1:0] m_axil_bready_reg = '0, m_axil_bready_next;
// unpack interface array
wire [ADDR_W-1:0] s_axil_awaddr[S_COUNT];
wire [2:0] s_axil_awprot[S_COUNT];
wire [AWUSER_W-1:0] s_axil_awuser[S_COUNT];
wire [S_COUNT-1:0] s_axil_awvalid;
wire [DATA_W-1:0] s_axil_wdata[S_COUNT];
wire [STRB_W-1:0] s_axil_wstrb[S_COUNT];
wire [WUSER_W-1:0] s_axil_wuser[S_COUNT];
wire [S_COUNT-1:0] s_axil_wvalid;
wire [S_COUNT-1:0] s_axil_bready;
wire [M_COUNT-1:0] m_axil_awready;
wire [M_COUNT-1:0] m_axil_wready;
wire [1:0] m_axil_bresp[M_COUNT];
wire [BUSER_W-1:0] m_axil_buser[M_COUNT];
wire [M_COUNT-1:0] m_axil_bvalid;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axil_awaddr[n] = s_axil_wr[n].awaddr;
assign s_axil_awprot[n] = s_axil_wr[n].awprot;
assign s_axil_awuser[n] = s_axil_wr[n].awuser;
assign s_axil_awvalid[n] = s_axil_wr[n].awvalid;
assign s_axil_wr[n].awready = s_axil_awready_reg[n];
assign s_axil_wdata[n] = s_axil_wr[n].wdata;
assign s_axil_wstrb[n] = s_axil_wr[n].wstrb;
assign s_axil_wuser[n] = s_axil_wr[n].wuser;
assign s_axil_wvalid[n] = s_axil_wr[n].wvalid;
assign s_axil_wr[n].wready = s_axil_wready_reg[n];
assign s_axil_wr[n].bresp = axil_bresp_reg;
assign s_axil_wr[n].buser = BUSER_EN ? axil_buser_reg : '0;
assign s_axil_wr[n].bvalid = s_axil_bvalid_reg[n];
assign s_axil_bready[n] = s_axil_wr[n].bready;
end
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign m_axil_wr[n].awaddr = axil_awaddr_reg;
assign m_axil_wr[n].awprot = axil_awprot_reg;
assign m_axil_wr[n].awuser = AWUSER_EN ? axil_awuser_reg : '0;
assign m_axil_wr[n].awvalid = m_axil_awvalid_reg[n];
assign m_axil_awready[n] = m_axil_wr[n].awready;
assign m_axil_wr[n].wdata = axil_wdata_reg;
assign m_axil_wr[n].wstrb = axil_wstrb_reg;
assign m_axil_wr[n].wuser = AWUSER_EN ? axil_wuser_reg : '0;
assign m_axil_wr[n].wvalid = m_axil_wvalid_reg[n];
assign m_axil_wready[n] = m_axil_wr[n].wready;
assign m_axil_bresp[n] = m_axil_wr[n].bresp;
assign m_axil_buser[n] = m_axil_wr[n].buser;
assign m_axil_bvalid[n] = m_axil_wr[n].bvalid;
assign m_axil_wr[n].bready = m_axil_bready_reg[n];
end
// slave side mux
wire [CL_S_COUNT_INT-1:0] s_select;
wire [ADDR_W-1:0] current_s_axil_awaddr = s_axil_awaddr[s_select];
wire [2:0] current_s_axil_awprot = s_axil_awprot[s_select];
wire [AWUSER_W-1:0] current_s_axil_awuser = s_axil_awuser[s_select];
wire current_s_axil_awvalid = s_axil_awvalid[s_select];
wire [DATA_W-1:0] current_s_axil_wdata = s_axil_wdata[s_select];
wire [STRB_W-1:0] current_s_axil_wstrb = s_axil_wstrb[s_select];
wire [WUSER_W-1:0] current_s_axil_wuser = s_axil_wuser[s_select];
wire current_s_axil_wvalid = s_axil_wvalid[s_select];
wire current_s_axil_bready = s_axil_bready[s_select];
// master side mux
wire current_m_axil_awready = m_axil_awready[m_select_reg];
wire current_m_axil_wready = m_axil_wready[m_select_reg];
wire [1:0] current_m_axil_bresp = m_axil_bresp[m_select_reg];
wire [BUSER_W-1:0] current_m_axil_buser = m_axil_buser[m_select_reg];
wire current_m_axil_bvalid = m_axil_bvalid[m_select_reg];
// arbiter instance
wire [S_COUNT-1:0] req;
wire [S_COUNT-1:0] ack;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT_INT-1:0] grant_index;
assign s_select = grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
arb_inst (
.clk(clk),
.rst(rst),
.req(req),
.ack(ack),
.grant(grant),
.grant_valid(grant_valid),
.grant_index(grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (req) begin
grant_valid_reg <= 1'b1;
end
if (ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign grant_valid = grant_valid_reg;
assign grant = '1;
assign grant_index = '0;
end
assign req = s_axil_awvalid;
assign ack = grant & s_axil_bvalid_reg & s_axil_bready;
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
m_select_next = m_select_reg;
axil_awaddr_next = axil_awaddr_reg;
axil_awaddr_valid_next = axil_awaddr_valid_reg;
axil_awprot_next = axil_awprot_reg;
axil_awuser_next = axil_awuser_reg;
axil_wdata_next = axil_wdata_reg;
axil_wstrb_next = axil_wstrb_reg;
axil_wuser_next = axil_wuser_reg;
axil_bresp_next = axil_bresp_reg;
axil_buser_next = axil_buser_reg;
s_axil_awready_next = '0;
s_axil_wready_next = '0;
s_axil_bvalid_next = s_axil_bvalid_reg & ~s_axil_bready;
m_axil_awvalid_next = m_axil_awvalid_reg & ~m_axil_awready;
m_axil_wvalid_next = m_axil_wvalid_reg & ~m_axil_wready;
m_axil_bready_next = '0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for arbitration
axil_awaddr_valid_next = 1'b1;
axil_awaddr_next = current_s_axil_awaddr;
axil_awprot_next = current_s_axil_awprot;
axil_awuser_next = current_s_axil_awuser;
if (grant_valid) begin
s_axil_awready_next[grant_index] = 1'b1;
state_next = STATE_DECODE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
// decode state; determine master interface
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !axil_awprot_reg[1]) && M_CONNECT_INT[i][s_select] && (axil_awaddr_reg >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = CL_M_COUNT_INT'(i);
match = 1'b1;
end
end
end
s_axil_wready_next[s_select] = 1'b1;
if (match) begin
state_next = STATE_WRITE;
end else begin
// no match; return decode error
state_next = STATE_WRITE_DROP;
end
end
STATE_WRITE: begin
// write state; store and forward write data
s_axil_wready_next[s_select] = 1'b1;
if (axil_awaddr_valid_reg) begin
m_axil_awvalid_next[m_select_reg] = 1'b1;
end
axil_awaddr_valid_next = 1'b0;
axil_wdata_next = current_s_axil_wdata;
axil_wstrb_next = current_s_axil_wstrb;
axil_wuser_next = current_s_axil_wuser;
if (s_axil_wready_reg != 0 && current_s_axil_wvalid) begin
s_axil_wready_next[s_select] = 1'b0;
m_axil_wvalid_next[m_select_reg] = 1'b1;
m_axil_bready_next[m_select_reg] = 1'b1;
state_next = STATE_WRITE_RESP;
end else begin
state_next = STATE_WRITE;
end
end
STATE_WRITE_RESP: begin
// write response state; store and forward write response
m_axil_bready_next[m_select_reg] = 1'b1;
axil_bresp_next = current_m_axil_bresp;
axil_buser_next = current_m_axil_buser;
if (m_axil_bready_reg != 0 && current_m_axil_bvalid) begin
m_axil_bready_next[m_select_reg] = 1'b0;
s_axil_bvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_WRITE_RESP;
end
end
STATE_WRITE_DROP: begin
// write drop state; drop write data
s_axil_wready_next[s_select] = 1'b1;
axil_awaddr_valid_next = 1'b0;
axil_bresp_next = 2'b11;
axil_buser_next = '0;
if (s_axil_wready_reg != 0 && current_s_axil_wvalid) begin
s_axil_wready_next[s_select] = 1'b0;
s_axil_bvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_WRITE_DROP;
end
end
STATE_WAIT_IDLE: begin
// wait for idle state; wait until grant valid is deasserted
if (grant_valid == 0 || ack != 0) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_IDLE;
end
end
default: begin
// invalid state
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
m_select_reg <= m_select_next;
axil_awaddr_reg <= axil_awaddr_next;
axil_awaddr_valid_reg <= axil_awaddr_valid_next;
axil_awprot_reg <= axil_awprot_next;
axil_awuser_reg <= axil_awuser_next;
axil_wdata_reg <= axil_wdata_next;
axil_wstrb_reg <= axil_wstrb_next;
axil_wuser_reg <= axil_wuser_next;
axil_bresp_reg <= axil_bresp_next;
axil_buser_reg <= axil_buser_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
s_axil_bvalid_reg <= s_axil_bvalid_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_awready_reg <= '0;
s_axil_wready_reg <= '0;
s_axil_bvalid_reg <= '0;
m_axil_awvalid_reg <= '0;
m_axil_wvalid_reg <= '0;
m_axil_bready_reg <= '0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,67 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2020-2025
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
RTL_DIR = ../../rtl
LIB_DIR = ../../lib
TAXI_SRC_DIR = $(LIB_DIR)/taxi/src
DUT = taxi_axil_interconnect
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += $(RTL_DIR)/$(DUT).f
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
REG_TYPE ?= 1
# module parameters
export PARAM_DATA_W := 32
export PARAM_ADDR_W := 32
export PARAM_STRB_W := $(shell expr $(PARAM_DATA_W) / 8 )
export PARAM_AWUSER_EN := 0
export PARAM_AWUSER_W := 1
export PARAM_WUSER_EN := 0
export PARAM_WUSER_W := 1
export PARAM_BUSER_EN := 0
export PARAM_BUSER_W := 1
export PARAM_ARUSER_EN := 0
export PARAM_ARUSER_W := 1
export PARAM_RUSER_EN := 0
export PARAM_RUSER_W := 1
export PARAM_M_REGIONS := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += -Wno-WIDTH
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,260 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2020-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Timer
from cocotb.regression import TestFactory
from cocotbext.axi import AxiLiteBus, AxiLiteMaster, AxiLiteRam
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 10, units="ns").start())
self.axil_master = [AxiLiteMaster(AxiLiteBus.from_entity(ch), dut.clk, dut.rst) for ch in dut.s_axil]
self.axil_ram = [AxiLiteRam(AxiLiteBus.from_entity(ch), dut.clk, dut.rst, size=2**16) for ch in dut.m_axil]
def set_idle_generator(self, generator=None):
if generator:
for master in self.axil_master:
master.write_if.aw_channel.set_pause_generator(generator())
master.write_if.w_channel.set_pause_generator(generator())
master.read_if.ar_channel.set_pause_generator(generator())
for ram in self.axil_ram:
ram.write_if.b_channel.set_pause_generator(generator())
ram.read_if.r_channel.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
for master in self.axil_master:
master.write_if.b_channel.set_pause_generator(generator())
master.read_if.r_channel.set_pause_generator(generator())
for ram in self.axil_ram:
ram.write_if.aw_channel.set_pause_generator(generator())
ram.write_if.w_channel.set_pause_generator(generator())
ram.read_if.ar_channel.set_pause_generator(generator())
async def cycle_reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def run_test_write(dut, data_in=None, idle_inserter=None, backpressure_inserter=None, s=0, m=0):
tb = TB(dut)
byte_lanes = tb.axil_master[s].write_if.byte_lanes
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in range(1, byte_lanes*2):
for offset in range(byte_lanes):
tb.log.info("length %d, offset %d", length, offset)
ram_addr = offset+0x1000
addr = ram_addr + m*0x1000000
test_data = bytearray([x % 256 for x in range(length)])
tb.axil_ram[m].write(ram_addr-128, b'\xaa'*(length+256))
await tb.axil_master[s].write(addr, test_data)
tb.log.debug("%s", tb.axil_ram[m].hexdump_str((ram_addr & ~0xf)-16, (((ram_addr & 0xf)+length-1) & ~0xf)+48))
assert tb.axil_ram[m].read(ram_addr, length) == test_data
assert tb.axil_ram[m].read(ram_addr-1, 1) == b'\xaa'
assert tb.axil_ram[m].read(ram_addr+length, 1) == b'\xaa'
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_read(dut, data_in=None, idle_inserter=None, backpressure_inserter=None, s=0, m=0):
tb = TB(dut)
byte_lanes = tb.axil_master[s].write_if.byte_lanes
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in range(1, byte_lanes*2):
for offset in range(byte_lanes):
tb.log.info("length %d, offset %d", length, offset)
ram_addr = offset+0x1000
addr = ram_addr + m*0x1000000
test_data = bytearray([x % 256 for x in range(length)])
tb.axil_ram[m].write(ram_addr, test_data)
data = await tb.axil_master[s].read(addr, length)
assert data.data == test_data
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
async def worker(master, offset, aperture, count=16):
for k in range(count):
m = random.randrange(len(tb.axil_ram))
length = random.randint(1, min(32, aperture))
addr = offset+random.randint(0, aperture-length) + m*0x1000000
test_data = bytearray([x % 256 for x in range(length)])
await Timer(random.randint(1, 100), 'ns')
await master.write(addr, test_data)
await Timer(random.randint(1, 100), 'ns')
data = await master.read(addr, length)
assert data.data == test_data
workers = []
for k in range(16):
workers.append(cocotb.start_soon(worker(tb.axil_master[k % len(tb.axil_master)], k*0x1000, 0x1000, count=16)))
while workers:
await workers.pop(0).join()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
if getattr(cocotb, 'top', None) is not None:
s_count = len(cocotb.top.s_axil)
m_count = len(cocotb.top.m_axil)
for test in [run_test_write, run_test_read]:
factory = TestFactory(test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.add_option("s", range(min(s_count, 2)))
factory.add_option("m", range(min(m_count, 2)))
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.generate_tests()
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl'))
lib_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'lib'))
taxi_src_dir = os.path.abspath(os.path.join(lib_dir, 'taxi', 'src'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("data_w", [8, 16, 32])
@pytest.mark.parametrize("m_count", [1, 4])
@pytest.mark.parametrize("s_count", [1, 4])
def test_taxi_axil_interconnect(request, s_count, m_count, data_w):
dut = "taxi_axil_interconnect"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, f"{dut}.f"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['S_COUNT'] = s_count
parameters['M_COUNT'] = m_count
parameters['DATA_W'] = data_w
parameters['ADDR_W'] = 32
parameters['STRB_W'] = parameters['DATA_W'] // 8
parameters['AWUSER_EN'] = 0
parameters['AWUSER_W'] = 1
parameters['WUSER_EN'] = 0
parameters['WUSER_W'] = 1
parameters['BUSER_EN'] = 0
parameters['BUSER_W'] = 1
parameters['ARUSER_EN'] = 0
parameters['ARUSER_W'] = 1
parameters['RUSER_EN'] = 0
parameters['RUSER_W'] = 1
parameters['M_REGIONS'] = 1
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,111 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-lite interconnect testbench
*/
module test_taxi_axil_interconnect #
(
/* verilator lint_off WIDTHTRUNC */
parameter S_COUNT = 4,
parameter M_COUNT = 4,
parameter DATA_W = 32,
parameter ADDR_W = 32,
parameter STRB_W = (DATA_W/8),
parameter logic AWUSER_EN = 1'b0,
parameter AWUSER_W = 1,
parameter logic WUSER_EN = 1'b0,
parameter WUSER_W = 1,
parameter logic BUSER_EN = 1'b0,
parameter BUSER_W = 1,
parameter logic ARUSER_EN = 1'b0,
parameter ARUSER_W = 1,
parameter logic RUSER_EN = 1'b0,
parameter RUSER_W = 1,
parameter M_REGIONS = 1,
parameter M_BASE_ADDR = '0,
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
parameter M_CONNECT_RD = {M_COUNT{{S_COUNT{1'b1}}}},
parameter M_CONNECT_WR = {M_COUNT{{S_COUNT{1'b1}}}},
parameter M_SECURE = {M_COUNT{1'b0}}
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axil_if #(
.DATA_W(DATA_W),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.AWUSER_EN(AWUSER_EN),
.AWUSER_W(AWUSER_W),
.WUSER_EN(WUSER_EN),
.WUSER_W(WUSER_W),
.BUSER_EN(BUSER_EN),
.BUSER_W(BUSER_W),
.ARUSER_EN(ARUSER_EN),
.ARUSER_W(ARUSER_W),
.RUSER_EN(RUSER_EN),
.RUSER_W(RUSER_W)
) s_axil[S_COUNT]();
taxi_axil_if #(
.DATA_W(DATA_W),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.AWUSER_EN(AWUSER_EN),
.AWUSER_W(AWUSER_W),
.WUSER_EN(WUSER_EN),
.WUSER_W(WUSER_W),
.BUSER_EN(BUSER_EN),
.BUSER_W(BUSER_W),
.ARUSER_EN(ARUSER_EN),
.ARUSER_W(ARUSER_W),
.RUSER_EN(RUSER_EN),
.RUSER_W(RUSER_W)
) m_axil[M_COUNT]();
taxi_axil_interconnect #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT_RD(M_CONNECT_RD),
.M_CONNECT_WR(M_CONNECT_WR),
.M_SECURE(M_SECURE)
)
uut (
.clk(clk),
.rst(rst),
/*
* AXI4-lite slave interface
*/
.s_axil_wr(s_axil),
.s_axil_rd(s_axil),
/*
* AXI4-lite master interface
*/
.m_axil_wr(m_axil),
.m_axil_rd(m_axil)
);
endmodule
`resetall