xfcp: Add XFCP AXI lite module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-03-10 13:25:55 -07:00
parent ed9e8ffab3
commit 70d77c8a95
5 changed files with 1207 additions and 0 deletions

View File

@@ -0,0 +1,675 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* XFCP AXI lite module
*/
module taxi_xfcp_mod_axil #
(
parameter logic [15:0] XFCP_ID_TYPE = 16'h8001,
parameter XFCP_ID_STR = "AXIL Master",
parameter logic [8*16-1:0] XFCP_EXT_ID = 0,
parameter XFCP_EXT_ID_STR = "",
parameter COUNT_SIZE = 16
)
(
input wire logic clk,
input wire logic rst,
/*
* XFCP upstream port
*/
taxi_axis_if.snk up_xfcp_in,
taxi_axis_if.src up_xfcp_out,
/*
* AXI lite master interface
*/
taxi_axil_if.wr_mst m_axil_wr,
taxi_axil_if.rd_mst m_axil_rd
);
// TODO various refactoring to fix width issues, among other things
// verilator lint_off WIDTH
localparam DATA_W = m_axil_wr.DATA_W;
localparam ADDR_W = m_axil_wr.ADDR_W;
localparam STRB_W = m_axil_wr.STRB_W;
// for interfaces that are more than one word wide, disable address lines
localparam VALID_ADDR_W = ADDR_W - $clog2(STRB_W);
// width of data port in words
localparam BYTE_LANES = STRB_W;
// size of words
localparam BYTE_W = DATA_W/BYTE_LANES;
localparam BYTE_AW = $clog2((BYTE_W+7)/8);
localparam WORD_AW = BYTE_AW + $clog2(STRB_W);
localparam BYTE_AM = {1'b0, {BYTE_AW{1'b1}}};
localparam WORD_AM = {1'b0, {WORD_AW{1'b1}}};
localparam ADDR_W_ADJ = ADDR_W+BYTE_AW;
localparam COUNT_BYTE_LANES = (COUNT_SIZE+8-1)/8;
localparam ADDR_BYTE_LANES = (ADDR_W_ADJ+8-1)/8;
// check configuration
if (BYTE_LANES * BYTE_W != DATA_W)
$fatal(0, "Error: AXI data width not evenly divisible (instance %m)");
if (2**$clog2(BYTE_LANES) != BYTE_LANES)
$fatal(0, "Error: AXI word width must be even power of two (instance %m)");
if (8*2**$clog2(BYTE_W/8) != BYTE_W)
$fatal(0, "Error: AXI word size must be a power of two multiple of 8 (instance %m)");
localparam START_TAG = 8'hFF;
localparam RPATH_TAG = 8'hFE;
localparam READ_REQ = 8'h10;
localparam READ_RESP = 8'h11;
localparam WRITE_REQ = 8'h12;
localparam WRITE_RESP = 8'h13;
localparam ID_REQ = 8'hFE;
localparam ID_RESP = 8'hFF;
// ID ROM
localparam ID_PTR_W = (XFCP_EXT_ID != 0 || XFCP_EXT_ID_STR != 0) ? 6 : 5;
localparam ID_ROM_SIZE = 2**ID_PTR_W;
reg [7:0] id_rom[ID_ROM_SIZE];
reg [ID_PTR_W-1:0] id_ptr_reg = '0, id_ptr_next;
integer j;
initial begin
// init ID ROM
for (integer i = 0; i < ID_ROM_SIZE; i = i + 1) begin
id_rom[i] = 0;
end
// binary part
{id_rom[1], id_rom[0]} = 16'h8000 | XFCP_ID_TYPE; // module type
{id_rom[3], id_rom[2]} = 16'(ADDR_W); // address bus width
{id_rom[5], id_rom[4]} = 16'(DATA_W); // data bus width
{id_rom[7], id_rom[6]} = 16'(BYTE_W); // word size
{id_rom[9], id_rom[8]} = 16'(COUNT_SIZE); // count size
// string part
// find string length
j = 0;
for (integer i = 1; i <= 16; i = i + 1) begin
if (j == i-1 && (XFCP_ID_STR >> (i*8)) > 0) begin
j = i;
end
end
// pack string
for (integer i = 0; i <= j; i = i + 1) begin
id_rom[i+16] = XFCP_ID_STR[8*(j-i) +: 8];
end
if (XFCP_EXT_ID != 0 || XFCP_EXT_ID_STR != 0) begin
// extended ID
// binary part
for (integer i = 0; i < 16; i = i + 1) begin
id_rom[i+32] = XFCP_EXT_ID[8*i +: 8];
end
// string part
// find string length
j = 0;
for (integer i = 1; i <= 16; i = i + 1) begin
if (j == i-1 && (XFCP_EXT_ID_STR >> (i*8)) > 0) begin
j = i;
end
end
// pack string
for (integer i = 0; i <= j; i = i + 1) begin
id_rom[i+48] = XFCP_EXT_ID_STR[8*(j-i) +: 8];
end
end
end
localparam [3:0]
STATE_IDLE = 4'd0,
STATE_HEADER_1 = 4'd1,
STATE_HEADER_2 = 4'd2,
STATE_HEADER_3 = 4'd3,
STATE_READ_1 = 4'd4,
STATE_READ_2 = 4'd5,
STATE_WRITE_1 = 4'd6,
STATE_WRITE_2 = 4'd7,
STATE_WAIT_LAST = 4'd8,
STATE_ID = 4'd9;
logic [3:0] state_reg = STATE_IDLE, state_next;
logic [COUNT_SIZE-1:0] ptr_reg = '0, ptr_next;
logic [7:0] count_reg = 8'd0, count_next;
logic last_cycle_reg = 1'b0;
logic write_reg = 1'b0, write_next;
logic [ADDR_W_ADJ-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic up_xfcp_in_tready_reg = 1'b0, up_xfcp_in_tready_next;
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
logic [STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next;
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
logic m_axil_bready_reg = 1'b0, m_axil_bready_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
// internal datapath
logic [7:0] up_xfcp_out_tdata_int;
logic up_xfcp_out_tvalid_int;
logic up_xfcp_out_tready_int_reg = 1'b0;
logic up_xfcp_out_tlast_int;
logic up_xfcp_out_tuser_int;
wire up_xfcp_out_tready_int_early;
assign up_xfcp_in.tready = up_xfcp_in_tready_reg;
assign m_axil_wr.awaddr = addr_reg;
assign m_axil_wr.awprot = 3'b010;
assign m_axil_wr.awuser = '0;
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
assign m_axil_wr.wdata = data_reg;
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
assign m_axil_wr.wuser = '0;
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
assign m_axil_wr.bready = m_axil_bready_reg;
assign m_axil_rd.araddr = addr_reg;
assign m_axil_rd.arprot = 3'b010;
assign m_axil_rd.aruser = '0;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
ptr_next = ptr_reg;
count_next = count_reg;
write_next = write_reg;
id_ptr_next = id_ptr_reg;
up_xfcp_in_tready_next = 1'b0;
up_xfcp_out_tdata_int = '0;
up_xfcp_out_tvalid_int = 1'b0;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
addr_next = addr_reg;
data_next = data_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready;
m_axil_bready_next = 1'b0;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle, wait for start of packet
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
id_ptr_next = '0;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
if (up_xfcp_in.tlast) begin
// last asserted, ignore cycle
state_next = STATE_IDLE;
end else if (up_xfcp_in.tdata == RPATH_TAG) begin
// need to pass through rpath
up_xfcp_out_tdata_int = up_xfcp_in.tdata;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
state_next = STATE_HEADER_1;
end else if (up_xfcp_in.tdata == START_TAG) begin
// process header
up_xfcp_out_tdata_int = up_xfcp_in.tdata;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
state_next = STATE_HEADER_2;
end else begin
// bad start byte, drop packet
state_next = STATE_WAIT_LAST;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_HEADER_1: begin
// transfer through header
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
// transfer through
up_xfcp_out_tdata_int = up_xfcp_in.tdata;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
if (up_xfcp_in.tlast) begin
// last asserted in header, mark as such and drop
up_xfcp_out_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else if (up_xfcp_in.tdata == START_TAG) begin
// process header
state_next = STATE_HEADER_2;
end else begin
state_next = STATE_HEADER_1;
end
end else begin
state_next = STATE_HEADER_1;
end
end
STATE_HEADER_2: begin
// read packet type
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
if (up_xfcp_in.tdata == READ_REQ && !up_xfcp_in.tlast) begin
// start of read
up_xfcp_out_tdata_int = READ_RESP;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
write_next = 1'b0;
count_next = 8'(COUNT_BYTE_LANES+ADDR_BYTE_LANES-1);
state_next = STATE_HEADER_3;
end else if (up_xfcp_in.tdata == WRITE_REQ && !up_xfcp_in.tlast) begin
// start of write
up_xfcp_out_tdata_int = WRITE_RESP;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
write_next = 1'b1;
count_next = 8'(COUNT_BYTE_LANES+ADDR_BYTE_LANES-1);
state_next = STATE_HEADER_3;
end else if (up_xfcp_in.tdata == ID_REQ) begin
// identify
up_xfcp_out_tdata_int = ID_RESP;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
state_next = STATE_ID;
end else begin
// invalid start of packet
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b1;
up_xfcp_out_tuser_int = 1'b1;
if (up_xfcp_in.tlast) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end
end else begin
state_next = STATE_HEADER_2;
end
end
STATE_HEADER_3: begin
// store address and length
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
// pass through
up_xfcp_out_tdata_int = up_xfcp_in.tdata;
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
// store pointers
if (count_reg < COUNT_BYTE_LANES) begin
ptr_next[8*(COUNT_BYTE_LANES-count_reg-1) +: 8] = up_xfcp_in.tdata;
end else begin
addr_next[8*(ADDR_BYTE_LANES-(count_reg-COUNT_BYTE_LANES)-1) +: 8] = up_xfcp_in.tdata;
end
count_next = count_reg - 1;
if (count_reg == 0) begin
// end of header
// set initial word offset
count_next = addr_reg & WORD_AM;
m_axil_wstrb_next = '0;
data_next = '0;
if (write_reg) begin
// start writing
if (up_xfcp_in.tlast) begin
// end of frame in header
up_xfcp_out_tlast_int = 1'b1;
up_xfcp_out_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else begin
up_xfcp_out_tlast_int = 1'b1;
state_next = STATE_WRITE_1;
end
end else begin
// start reading
up_xfcp_in_tready_next = !(last_cycle_reg || (up_xfcp_in.tvalid && up_xfcp_in.tlast));
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b1;
state_next = STATE_READ_1;
end
end else begin
if (up_xfcp_in.tlast) begin
// end of frame in header
up_xfcp_out_tlast_int = 1'b1;
up_xfcp_out_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_HEADER_3;
end
end
end else begin
state_next = STATE_HEADER_3;
end
end
STATE_READ_1: begin
// wait for data
m_axil_rready_next = 1'b1;
// drop padding
up_xfcp_in_tready_next = !(last_cycle_reg || (up_xfcp_in.tvalid && up_xfcp_in.tlast));
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
// read cycle complete, store result
m_axil_rready_next = 1'b0;
data_next = m_axil_rd.rdata;
addr_next = addr_reg + (1 << (ADDR_W-VALID_ADDR_W+BYTE_AW));
state_next = STATE_READ_2;
end else begin
state_next = STATE_READ_1;
end
end
STATE_READ_2: begin
// send data
// drop padding
up_xfcp_in_tready_next = !(last_cycle_reg || (up_xfcp_in.tvalid && up_xfcp_in.tlast));
if (up_xfcp_out_tready_int_reg) begin
// transfer word and update pointers
up_xfcp_out_tdata_int = data_reg[8*count_reg +: 8];
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
count_next = count_reg + 1;
ptr_next = ptr_reg - 1;
if (ptr_reg == 1) begin
// last word of read
up_xfcp_out_tlast_int = 1'b1;
if (!(last_cycle_reg || (up_xfcp_in.tvalid && up_xfcp_in.tlast))) begin
state_next = STATE_WAIT_LAST;
end else begin
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
state_next = STATE_IDLE;
end
end else if (count_reg == (STRB_W*BYTE_W/8)-1) begin
// end of stored data word; read the next one
count_next = 0;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b1;
state_next = STATE_READ_1;
end else begin
state_next = STATE_READ_2;
end
end else begin
state_next = STATE_READ_2;
end
end
STATE_WRITE_1: begin
// write data
up_xfcp_in_tready_next = 1'b1;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
// store word
data_next[8*count_reg +: 8] = up_xfcp_in.tdata;
count_next = count_reg + 1;
ptr_next = ptr_reg - 1;
m_axil_wstrb_next[count_reg >> ((BYTE_W/8)-1)] = 1'b1;
if (count_reg == (STRB_W*BYTE_W/8)-1 || ptr_reg == 1) begin
// have full word or at end of block, start write operation
count_next = 0;
up_xfcp_in_tready_next = 1'b0;
m_axil_awvalid_next = 1'b1;
m_axil_wvalid_next = 1'b1;
m_axil_bready_next = 1'b1;
state_next = STATE_WRITE_2;
if (up_xfcp_in.tlast) begin
// last asserted, nothing further to write
ptr_next = 0;
end
end else if (up_xfcp_in.tlast) begin
// last asserted, return to idle
state_next = STATE_IDLE;
end else begin
state_next = STATE_WRITE_1;
end
end else begin
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_2: begin
// wait for write completion
m_axil_bready_next = 1'b1;
if (m_axil_wr.bready && m_axil_wr.bvalid) begin
// end of write operation
data_next = '0;
addr_next = addr_reg + (1 << (ADDR_W-VALID_ADDR_W+BYTE_AW));
m_axil_bready_next = 1'b0;
m_axil_wstrb_next = '0;
if (ptr_reg == 0) begin
// done writing
if (!last_cycle_reg) begin
up_xfcp_in_tready_next = 1'b1;
state_next = STATE_WAIT_LAST;
end else begin
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
// more to write
state_next = STATE_WRITE_1;
end
end else begin
state_next = STATE_WRITE_2;
end
end
STATE_ID: begin
// send ID
// drop padding
up_xfcp_in_tready_next = !(last_cycle_reg || (up_xfcp_in.tvalid && up_xfcp_in.tlast));
up_xfcp_out_tdata_int = id_rom[id_ptr_reg];
up_xfcp_out_tvalid_int = 1'b1;
up_xfcp_out_tlast_int = 1'b0;
up_xfcp_out_tuser_int = 1'b0;
if (up_xfcp_out_tready_int_reg) begin
// increment pointer
id_ptr_next = id_ptr_reg + 1;
if (id_ptr_reg == ID_PTR_W'(ID_ROM_SIZE-1)) begin
// read out whole ID
up_xfcp_out_tlast_int = 1'b1;
if (!(last_cycle_reg || (up_xfcp_in.tvalid && up_xfcp_in.tlast))) begin
state_next = STATE_WAIT_LAST;
end else begin
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_ID;
end
end else begin
state_next = STATE_ID;
end
end
STATE_WAIT_LAST: begin
// wait for end of frame
up_xfcp_in_tready_next = 1'b1;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
// wait for tlast
if (up_xfcp_in.tlast) begin
up_xfcp_in_tready_next = up_xfcp_out_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end else begin
state_next = STATE_WAIT_LAST;
end
end
default: begin
// return to idle
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_ptr_reg <= id_ptr_next;
ptr_reg <= ptr_next;
count_reg <= count_next;
write_reg <= write_next;
if (up_xfcp_in.tready && up_xfcp_in.tvalid) begin
last_cycle_reg <= up_xfcp_in.tlast;
end
addr_reg <= addr_next;
data_reg <= data_next;
up_xfcp_in_tready_reg <= up_xfcp_in_tready_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
up_xfcp_in_tready_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
// output datapath logic
logic [7:0] up_xfcp_out_tdata_reg = '0;
logic up_xfcp_out_tvalid_reg = 1'b0, up_xfcp_out_tvalid_next;
logic up_xfcp_out_tlast_reg = 1'b0;
logic up_xfcp_out_tuser_reg = 1'b0;
logic [7:0] temp_up_xfcp_tdata_reg = '0;
logic temp_up_xfcp_tvalid_reg = 1'b0, temp_up_xfcp_tvalid_next;
logic temp_up_xfcp_tlast_reg = 1'b0;
logic temp_up_xfcp_tuser_reg = 1'b0;
// datapath control
reg store_up_xfcp_int_to_output;
reg store_up_xfcp_int_to_temp;
reg store_up_xfcp_temp_to_output;
assign up_xfcp_out.tdata = up_xfcp_out_tdata_reg;
assign up_xfcp_out.tkeep = '1;
assign up_xfcp_out.tstrb = up_xfcp_out.tkeep;
assign up_xfcp_out.tvalid = up_xfcp_out_tvalid_reg;
assign up_xfcp_out.tlast = up_xfcp_out_tlast_reg;
assign up_xfcp_out.tid = '0;
assign up_xfcp_out.tdest = '0;
assign up_xfcp_out.tuser = up_xfcp_out_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign up_xfcp_out_tready_int_early = up_xfcp_out.tready || (!temp_up_xfcp_tvalid_reg && (!up_xfcp_out_tvalid_reg || !up_xfcp_out_tvalid_int));
always_comb begin
// transfer sink ready state to source
up_xfcp_out_tvalid_next = up_xfcp_out_tvalid_reg;
temp_up_xfcp_tvalid_next = temp_up_xfcp_tvalid_reg;
store_up_xfcp_int_to_output = 1'b0;
store_up_xfcp_int_to_temp = 1'b0;
store_up_xfcp_temp_to_output = 1'b0;
if (up_xfcp_out_tready_int_reg) begin
// input is ready
if (up_xfcp_out.tready || !up_xfcp_out_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
up_xfcp_out_tvalid_next = up_xfcp_out_tvalid_int;
store_up_xfcp_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_up_xfcp_tvalid_next = up_xfcp_out_tvalid_int;
store_up_xfcp_int_to_temp = 1'b1;
end
end else if (up_xfcp_out.tready) begin
// input is not ready, but output is ready
up_xfcp_out_tvalid_next = temp_up_xfcp_tvalid_reg;
temp_up_xfcp_tvalid_next = 1'b0;
store_up_xfcp_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
up_xfcp_out_tvalid_reg <= up_xfcp_out_tvalid_next;
up_xfcp_out_tready_int_reg <= up_xfcp_out_tready_int_early;
temp_up_xfcp_tvalid_reg <= temp_up_xfcp_tvalid_next;
// datapath
if (store_up_xfcp_int_to_output) begin
up_xfcp_out_tdata_reg <= up_xfcp_out_tdata_int;
up_xfcp_out_tlast_reg <= up_xfcp_out_tlast_int;
up_xfcp_out_tuser_reg <= up_xfcp_out_tuser_int;
end else if (store_up_xfcp_temp_to_output) begin
up_xfcp_out_tdata_reg <= temp_up_xfcp_tdata_reg;
up_xfcp_out_tlast_reg <= temp_up_xfcp_tlast_reg;
up_xfcp_out_tuser_reg <= temp_up_xfcp_tuser_reg;
end
if (store_up_xfcp_int_to_temp) begin
temp_up_xfcp_tdata_reg <= up_xfcp_out_tdata_int;
temp_up_xfcp_tlast_reg <= up_xfcp_out_tlast_int;
temp_up_xfcp_tuser_reg <= up_xfcp_out_tuser_int;
end
if (rst) begin
up_xfcp_out_tvalid_reg <= 1'b0;
up_xfcp_out_tready_int_reg <= 1'b0;
temp_up_xfcp_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall