example/fb2CG: Add example design for fb2CG@KU15P

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-25 15:49:21 -08:00
parent 5a8ac23922
commit 8785c1517b
12 changed files with 2057 additions and 0 deletions

View File

@@ -0,0 +1,232 @@
// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga #
(
parameter logic SIM = 1'b0,
parameter string VENDOR = "XILINX",
parameter string FAMILY = "kintexuplus"
)
(
/*
* Clock: 100MHz
*/
input wire logic init_clk,
/*
* GPIO
*/
output wire logic led_sreg_d,
output wire logic led_sreg_ld,
output wire logic led_sreg_clk,
output wire logic [1:0] led_bmc,
output wire logic [1:0] led_exp,
/*
* Board status
*/
input wire logic [1:0] pg,
/*
* Ethernet: QSFP28
*/
output wire logic [3:0] qsfp_0_tx_p,
output wire logic [3:0] qsfp_0_tx_n,
input wire logic [3:0] qsfp_0_rx_p,
input wire logic [3:0] qsfp_0_rx_n,
input wire logic qsfp_0_mgt_refclk_p,
input wire logic qsfp_0_mgt_refclk_n,
input wire logic qsfp_0_mod_prsnt_n,
output wire logic qsfp_0_reset_n,
output wire logic qsfp_0_lp_mode,
input wire logic qsfp_0_intr_n,
output wire logic [3:0] qsfp_1_tx_p,
output wire logic [3:0] qsfp_1_tx_n,
input wire logic [3:0] qsfp_1_rx_p,
input wire logic [3:0] qsfp_1_rx_n,
input wire logic qsfp_1_mgt_refclk_p,
input wire logic qsfp_1_mgt_refclk_n,
input wire logic qsfp_1_mod_prsnt_n,
output wire logic qsfp_1_reset_n,
output wire logic qsfp_1_lp_mode,
input wire logic qsfp_1_intr_n
);
// Clock and reset
wire init_clk_bufg;
// Internal 125 MHz clock
wire clk_125mhz_mmcm_out;
wire clk_125mhz_int;
wire rst_125mhz_int;
wire mmcm_rst = !pg[0] || !pg[1];
wire mmcm_locked;
wire mmcm_clkfb;
BUFG
init_clk_bufg_inst (
.I(init_clk),
.O(init_clk_bufg)
);
// MMCM instance
MMCME4_BASE #(
// 50 MHz input
.CLKIN1_PERIOD(20.000),
.REF_JITTER1(0.010),
// 50 MHz input / 1 = 50 MHz PFD (range 10 MHz to 500 MHz)
.DIVCLK_DIVIDE(1),
// 50 MHz PFD * 25 = 1250 MHz VCO (range 800 MHz to 1600 MHz)
.CLKFBOUT_MULT_F(25),
.CLKFBOUT_PHASE(0),
// 1250 MHz / 10 = 125 MHz, 0 degrees
.CLKOUT0_DIVIDE_F(10),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
// Not used
.CLKOUT1_DIVIDE(10),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(90),
// Not used
.CLKOUT2_DIVIDE(20),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
// Not used
.CLKOUT3_DIVIDE(4),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
// Not used
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT4_CASCADE("FALSE"),
// Not used
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
// Not used
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
// optimized bandwidth
.BANDWIDTH("OPTIMIZED"),
// don't wait for lock during startup
.STARTUP_WAIT("FALSE")
)
clk_mmcm_inst (
// 300 MHz input
.CLKIN1(init_clk_bufg),
// direct clkfb feeback
.CLKFBIN(mmcm_clkfb),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
// 125 MHz, 0 degrees
.CLKOUT0(clk_125mhz_mmcm_out),
.CLKOUT0B(),
// Not used
.CLKOUT1(),
.CLKOUT1B(),
// Not used
.CLKOUT2(),
.CLKOUT2B(),
// Not used
.CLKOUT3(),
.CLKOUT3B(),
// Not used
.CLKOUT4(),
// Not used
.CLKOUT5(),
// Not used
.CLKOUT6(),
// reset input
.RST(mmcm_rst),
// don't power down
.PWRDWN(1'b0),
// locked output
.LOCKED(mmcm_locked)
);
BUFG
clk_125mhz_bufg_inst (
.I(clk_125mhz_mmcm_out),
.O(clk_125mhz_int)
);
taxi_sync_reset #(
.N(4)
)
sync_reset_125mhz_inst (
.clk(clk_125mhz_int),
.rst(~mmcm_locked),
.out(rst_125mhz_int)
);
fpga_core #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY)
)
core_inst (
/*
* Clock: 125 MHz
* Synchronous reset
*/
.clk_125mhz(clk_125mhz_int),
.rst_125mhz(rst_125mhz_int),
/*
* GPIO
*/
.led_sreg_d(led_sreg_d),
.led_sreg_ld(led_sreg_ld),
.led_sreg_clk(led_sreg_clk),
.led_bmc(led_bmc),
.led_exp(led_exp),
/*
* Ethernet: QSFP28
*/
.qsfp_0_tx_p(qsfp_0_tx_p),
.qsfp_0_tx_n(qsfp_0_tx_n),
.qsfp_0_rx_p(qsfp_0_rx_p),
.qsfp_0_rx_n(qsfp_0_rx_n),
.qsfp_0_mgt_refclk_p(qsfp_0_mgt_refclk_p),
.qsfp_0_mgt_refclk_n(qsfp_0_mgt_refclk_n),
.qsfp_0_mod_prsnt_n(qsfp_0_mod_prsnt_n),
.qsfp_0_reset_n(qsfp_0_reset_n),
.qsfp_0_lp_mode(qsfp_0_lp_mode),
.qsfp_0_intr_n(qsfp_0_intr_n),
.qsfp_1_tx_p(qsfp_1_tx_p),
.qsfp_1_tx_n(qsfp_1_tx_n),
.qsfp_1_rx_p(qsfp_1_rx_p),
.qsfp_1_rx_n(qsfp_1_rx_n),
.qsfp_1_mgt_refclk_p(qsfp_1_mgt_refclk_p),
.qsfp_1_mgt_refclk_n(qsfp_1_mgt_refclk_n),
.qsfp_1_mod_prsnt_n(qsfp_1_mod_prsnt_n),
.qsfp_1_reset_n(qsfp_1_reset_n),
.qsfp_1_lp_mode(qsfp_1_lp_mode),
.qsfp_1_intr_n(qsfp_1_intr_n)
);
endmodule
`resetall

View File

@@ -0,0 +1,409 @@
// SPDX-License-Identifier: MIT
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA core logic
*/
module fpga_core #
(
parameter logic SIM = 1'b0,
parameter string VENDOR = "XILINX",
parameter string FAMILY = "kintexuplus"
)
(
/*
* Clock: 156.25MHz
* Synchronous reset
*/
input wire logic clk_125mhz,
input wire logic rst_125mhz,
/*
* GPIO
*/
output wire logic led_sreg_d,
output wire logic led_sreg_ld,
output wire logic led_sreg_clk,
output wire logic [1:0] led_bmc,
output wire logic [1:0] led_exp,
/*
* Ethernet: QSFP28
*/
output wire logic [3:0] qsfp_0_tx_p,
output wire logic [3:0] qsfp_0_tx_n,
input wire logic [3:0] qsfp_0_rx_p,
input wire logic [3:0] qsfp_0_rx_n,
input wire logic qsfp_0_mgt_refclk_p,
input wire logic qsfp_0_mgt_refclk_n,
input wire logic qsfp_0_mod_prsnt_n,
output wire logic qsfp_0_reset_n,
output wire logic qsfp_0_lp_mode,
input wire logic qsfp_0_intr_n,
output wire logic [3:0] qsfp_1_tx_p,
output wire logic [3:0] qsfp_1_tx_n,
input wire logic [3:0] qsfp_1_rx_p,
input wire logic [3:0] qsfp_1_rx_n,
input wire logic qsfp_1_mgt_refclk_p,
input wire logic qsfp_1_mgt_refclk_n,
input wire logic qsfp_1_mod_prsnt_n,
output wire logic qsfp_1_reset_n,
output wire logic qsfp_1_lp_mode,
input wire logic qsfp_1_intr_n
);
// LED
wire [7:0] led_g;
wire [7:0] led_r;
taxi_led_sreg #(
.COUNT(8),
.INVERT(1),
.REVERSE(0),
.INTERLEAVE(1),
.PRESCALE(63)
)
led_sreg_driver_inst (
.clk(clk_125mhz),
.rst(rst_125mhz),
.led_a(led_r),
.led_b(led_g),
.sreg_d(led_sreg_d),
.sreg_ld(led_sreg_ld),
.sreg_clk(led_sreg_clk)
);
// QSFP28
assign qsfp_0_reset_n = 1'b1;
assign qsfp_0_lp_mode = 1'b0;
assign qsfp_1_reset_n = 1'b1;
assign qsfp_1_lp_mode = 1'b0;
wire [7:0] qsfp_tx_clk;
wire [7:0] qsfp_tx_rst;
wire [7:0] qsfp_rx_clk;
wire [7:0] qsfp_rx_rst;
wire [7:0] qsfp_rx_status;
assign led_g = qsfp_rx_status;
assign led_r = '0;
assign led_bmc = '0;
assign led_exp = '1;
wire [1:0] qsfp_gtpowergood;
taxi_axis_if #(.DATA_W(64), .ID_W(8)) axis_qsfp_tx[7:0]();
taxi_axis_if #(.DATA_W(96), .KEEP_W(1), .ID_W(8)) axis_qsfp_tx_cpl[7:0]();
taxi_axis_if #(.DATA_W(64), .ID_W(8)) axis_qsfp_rx[7:0]();
wire [1:0] qsfp_mgt_refclk_p = {qsfp_1_mgt_refclk_p, qsfp_0_mgt_refclk_p};
wire [1:0] qsfp_mgt_refclk_n = {qsfp_1_mgt_refclk_n, qsfp_0_mgt_refclk_n};
wire [1:0] qsfp_mgt_refclk;
wire [1:0] qsfp_mgt_refclk_bufg;
wire [1:0] qsfp_rst;
for (genvar n = 0; n < 2; n = n + 1) begin : gty_clk
wire qsfp_mgt_refclk_int;
if (SIM) begin
assign qsfp_mgt_refclk[n] = qsfp_mgt_refclk_p[n];
assign qsfp_mgt_refclk_int = qsfp_mgt_refclk_p[n];
assign qsfp_mgt_refclk_bufg[n] = qsfp_mgt_refclk_int;
end else begin
IBUFDS_GTE4 ibufds_gte4_qsfp_mgt_refclk_inst (
.I (qsfp_mgt_refclk_p[n]),
.IB (qsfp_mgt_refclk_n[n]),
.CEB (1'b0),
.O (qsfp_mgt_refclk[n]),
.ODIV2 (qsfp_mgt_refclk_int)
);
BUFG_GT bufg_gt_qsfp_mgt_refclk_inst (
.CE (&qsfp_gtpowergood),
.CEMASK (1'b1),
.CLR (1'b0),
.CLRMASK (1'b1),
.DIV (3'd0),
.I (qsfp_mgt_refclk_int),
.O (qsfp_mgt_refclk_bufg[n])
);
end
taxi_sync_reset #(
.N(4)
)
qsfp_sync_reset_inst (
.clk(qsfp_mgt_refclk_bufg[n]),
.rst(rst_125mhz),
.out(qsfp_rst[n])
);
end
wire [7:0] qsfp_tx_p;
wire [7:0] qsfp_tx_n;
wire [7:0] qsfp_rx_p = {qsfp_1_rx_p, qsfp_0_rx_p};
wire [7:0] qsfp_rx_n = {qsfp_1_rx_n, qsfp_0_rx_n};
assign qsfp_0_tx_p = qsfp_tx_p[3:0];
assign qsfp_0_tx_n = qsfp_tx_n[3:0];
assign qsfp_1_tx_p = qsfp_tx_p[7:4];
assign qsfp_1_tx_n = qsfp_tx_n[7:4];
for (genvar n = 0; n < 2; n = n + 1) begin : gty_quad
localparam CLK = n;
localparam CNT = 4;
taxi_eth_mac_25g_us #(
.SIM(SIM),
.VENDOR(VENDOR),
.FAMILY(FAMILY),
.CNT(CNT),
// GT type
.GT_TYPE("GTY"),
// PHY parameters
.PADDING_EN(1'b1),
.DIC_EN(1'b1),
.MIN_FRAME_LEN(64),
.PTP_TS_EN(1'b0),
.PTP_TS_FMT_TOD(1'b1),
.PTP_TS_W(96),
.PRBS31_EN(1'b0),
.TX_SERDES_PIPELINE(1),
.RX_SERDES_PIPELINE(1),
.COUNT_125US(125000/6.4)
)
mac_inst (
.xcvr_ctrl_clk(clk_125mhz),
.xcvr_ctrl_rst(qsfp_rst[CLK]),
/*
* Common
*/
.xcvr_gtpowergood_out(qsfp_gtpowergood[n]),
.xcvr_gtrefclk00_in(qsfp_mgt_refclk[CLK]),
.xcvr_qpll0lock_out(),
.xcvr_qpll0clk_out(),
.xcvr_qpll0refclk_out(),
/*
* Serial data
*/
.xcvr_txp(qsfp_tx_p[n*CNT +: CNT]),
.xcvr_txn(qsfp_tx_n[n*CNT +: CNT]),
.xcvr_rxp(qsfp_rx_p[n*CNT +: CNT]),
.xcvr_rxn(qsfp_rx_n[n*CNT +: CNT]),
/*
* MAC clocks
*/
.rx_clk(qsfp_rx_clk[n*CNT +: CNT]),
.rx_rst_in('0),
.rx_rst_out(qsfp_rx_rst[n*CNT +: CNT]),
.tx_clk(qsfp_tx_clk[n*CNT +: CNT]),
.tx_rst_in('0),
.tx_rst_out(qsfp_tx_rst[n*CNT +: CNT]),
.ptp_sample_clk('0),
/*
* Transmit interface (AXI stream)
*/
.s_axis_tx(axis_qsfp_tx[n*CNT +: CNT]),
.m_axis_tx_cpl(axis_qsfp_tx_cpl[n*CNT +: CNT]),
/*
* Receive interface (AXI stream)
*/
.m_axis_rx(axis_qsfp_rx[n*CNT +: CNT]),
/*
* PTP clock
*/
.tx_ptp_ts('0),
.tx_ptp_ts_step('0),
.rx_ptp_ts('0),
.rx_ptp_ts_step('0),
/*
* Link-level Flow Control (LFC) (IEEE 802.3 annex 31B PAUSE)
*/
.tx_lfc_req('0),
.tx_lfc_resend('0),
.rx_lfc_en('0),
.rx_lfc_req(),
.rx_lfc_ack('0),
/*
* Priority Flow Control (PFC) (IEEE 802.3 annex 31D PFC)
*/
.tx_pfc_req('0),
.tx_pfc_resend('0),
.rx_pfc_en('0),
.rx_pfc_req(),
.rx_pfc_ack('0),
/*
* Pause interface
*/
.tx_lfc_pause_en('0),
.tx_pause_req('0),
.tx_pause_ack(),
/*
* Status
*/
.tx_start_packet(),
.tx_error_underflow(),
.rx_start_packet(),
.rx_error_count(),
.rx_error_bad_frame(),
.rx_error_bad_fcs(),
.rx_bad_block(),
.rx_sequence_error(),
.rx_block_lock(),
.rx_high_ber(),
.rx_status(qsfp_rx_status[n*CNT +: CNT]),
.stat_tx_mcf(),
.stat_rx_mcf(),
.stat_tx_lfc_pkt(),
.stat_tx_lfc_xon(),
.stat_tx_lfc_xoff(),
.stat_tx_lfc_paused(),
.stat_tx_pfc_pkt(),
.stat_tx_pfc_xon(),
.stat_tx_pfc_xoff(),
.stat_tx_pfc_paused(),
.stat_rx_lfc_pkt(),
.stat_rx_lfc_xon(),
.stat_rx_lfc_xoff(),
.stat_rx_lfc_paused(),
.stat_rx_pfc_pkt(),
.stat_rx_pfc_xon(),
.stat_rx_pfc_xoff(),
.stat_rx_pfc_paused(),
/*
* Configuration
*/
.cfg_ifg('{CNT{8'd12}}),
.cfg_tx_enable('1),
.cfg_rx_enable('1),
.cfg_tx_prbs31_enable('0),
.cfg_rx_prbs31_enable('0),
.cfg_mcf_rx_eth_dst_mcast('{CNT{48'h01_80_C2_00_00_01}}),
.cfg_mcf_rx_check_eth_dst_mcast('1),
.cfg_mcf_rx_eth_dst_ucast('{CNT{48'd0}}),
.cfg_mcf_rx_check_eth_dst_ucast('0),
.cfg_mcf_rx_eth_src('{CNT{48'd0}}),
.cfg_mcf_rx_check_eth_src('0),
.cfg_mcf_rx_eth_type('{CNT{16'h8808}}),
.cfg_mcf_rx_opcode_lfc('{CNT{16'h0001}}),
.cfg_mcf_rx_check_opcode_lfc('1),
.cfg_mcf_rx_opcode_pfc('{CNT{16'h0101}}),
.cfg_mcf_rx_check_opcode_pfc('1),
.cfg_mcf_rx_forward('0),
.cfg_mcf_rx_enable('0),
.cfg_tx_lfc_eth_dst('{CNT{48'h01_80_C2_00_00_01}}),
.cfg_tx_lfc_eth_src('{CNT{48'h80_23_31_43_54_4C}}),
.cfg_tx_lfc_eth_type('{CNT{16'h8808}}),
.cfg_tx_lfc_opcode('{CNT{16'h0001}}),
.cfg_tx_lfc_en('0),
.cfg_tx_lfc_quanta('{CNT{16'hffff}}),
.cfg_tx_lfc_refresh('{CNT{16'h7fff}}),
.cfg_tx_pfc_eth_dst('{CNT{48'h01_80_C2_00_00_01}}),
.cfg_tx_pfc_eth_src('{CNT{48'h80_23_31_43_54_4C}}),
.cfg_tx_pfc_eth_type('{CNT{16'h8808}}),
.cfg_tx_pfc_opcode('{CNT{16'h0101}}),
.cfg_tx_pfc_en('0),
.cfg_tx_pfc_quanta('{CNT{'{8{16'hffff}}}}),
.cfg_tx_pfc_refresh('{CNT{'{8{16'h7fff}}}}),
.cfg_rx_lfc_opcode('{CNT{16'h0001}}),
.cfg_rx_lfc_en('0),
.cfg_rx_pfc_opcode('{CNT{16'h0101}}),
.cfg_rx_pfc_en('0)
);
end
for (genvar n = 0; n < 8; n = n + 1) begin : qsfp_ch
taxi_axis_async_fifo #(
.DEPTH(16384),
.RAM_PIPELINE(2),
.FRAME_FIFO(1),
.USER_BAD_FRAME_VALUE(1'b1),
.USER_BAD_FRAME_MASK(1'b1),
.DROP_OVERSIZE_FRAME(1),
.DROP_BAD_FRAME(1),
.DROP_WHEN_FULL(1)
)
ch_fifo (
/*
* AXI4-Stream input (sink)
*/
.s_clk(qsfp_rx_clk[n]),
.s_rst(qsfp_rx_rst[n]),
.s_axis(axis_qsfp_rx[n]),
/*
* AXI4-Stream output (source)
*/
.m_clk(qsfp_tx_clk[n]),
.m_rst(qsfp_tx_rst[n]),
.m_axis(axis_qsfp_tx[n]),
/*
* Pause
*/
.s_pause_req(1'b0),
.s_pause_ack(),
.m_pause_req(1'b0),
.m_pause_ack(),
/*
* Status
*/
.s_status_depth(),
.s_status_depth_commit(),
.s_status_overflow(),
.s_status_bad_frame(),
.s_status_good_frame(),
.m_status_depth(),
.m_status_depth_commit(),
.m_status_overflow(),
.m_status_bad_frame(),
.m_status_good_frame()
);
end
endmodule
`resetall