eth: Add MAC control modules

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-08 19:59:11 -08:00
parent 96e348ac84
commit 8d3d703656
8 changed files with 2203 additions and 0 deletions

421
rtl/eth/taxi_mac_ctrl_rx.sv Normal file
View File

@@ -0,0 +1,421 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2023-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MAC control receiver
*/
module taxi_mac_ctrl_rx #
(
parameter ID_W = 8,
parameter DEST_W = 8,
parameter USER_W = 1,
parameter logic USE_READY = 1'b0,
parameter MCF_PARAMS_SIZE = 18
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream input (sink)
*/
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis,
/*
* MAC control frame interface
*/
output wire logic mcf_valid,
output wire logic [47:0] mcf_eth_dst,
output wire logic [47:0] mcf_eth_src,
output wire logic [15:0] mcf_eth_type,
output wire logic [15:0] mcf_opcode,
output wire logic [MCF_PARAMS_SIZE*8-1:0] mcf_params,
output wire logic [ID_W-1:0] mcf_id,
output wire logic [DEST_W-1:0] mcf_dest,
output wire logic [USER_W-1:0] mcf_user,
/*
* Configuration
*/
input wire logic [47:0] cfg_mcf_rx_eth_dst_mcast,
input wire logic cfg_mcf_rx_check_eth_dst_mcast,
input wire logic [47:0] cfg_mcf_rx_eth_dst_ucast,
input wire logic cfg_mcf_rx_check_eth_dst_ucast,
input wire logic [47:0] cfg_mcf_rx_eth_src,
input wire logic cfg_mcf_rx_check_eth_src,
input wire logic [15:0] cfg_mcf_rx_eth_type,
input wire logic [15:0] cfg_mcf_rx_opcode_lfc,
input wire logic cfg_mcf_rx_check_opcode_lfc,
input wire logic [15:0] cfg_mcf_rx_opcode_pfc,
input wire logic cfg_mcf_rx_check_opcode_pfc,
input wire logic cfg_mcf_rx_forward,
input wire logic cfg_mcf_rx_enable,
/*
* Status
*/
output wire logic stat_rx_mcf
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam BYTE_LANES = KEEP_EN ? KEEP_W : 1;
localparam HDR_SIZE = 60;
localparam CYCLE_CNT = (HDR_SIZE+BYTE_LANES-1)/BYTE_LANES;
localparam PTR_W = $clog2(CYCLE_CNT+1);
localparam OFFSET = HDR_SIZE % BYTE_LANES;
// check configuration
if (BYTE_LANES * 8 != DATA_W)
$fatal(0, "Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
if (MCF_PARAMS_SIZE > 44)
$fatal(0, "Error: Maximum MCF_PARAMS_SIZE is 44 bytes (instance %m)");
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
/*
MAC control frame
Field Length
Destination MAC address 6 octets [01:80:C2:00:00:01]
Source MAC address 6 octets
Ethertype 2 octets [0x8808]
Opcode 2 octets
Parameters 0-44 octets
This module manages the reception of MAC control frames. Incoming frames are
checked based on the ethertype and (optionally) MAC addresses. Matching control
frames are marked by setting tuser[0] on the data output and forwarded through
a separate interface for processing.
*/
logic read_mcf_reg = 1'b1, read_mcf_next;
logic mcf_frame_reg = 1'b0, mcf_frame_next;
logic [PTR_W-1:0] ptr_reg = 0, ptr_next;
logic s_axis_tready_reg = 1'b0, s_axis_tready_next;
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [ID_W-1:0] m_axis_tid_int;
logic [DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
logic mcf_valid_reg = 0, mcf_valid_next;
logic [47:0] mcf_eth_dst_reg = 0, mcf_eth_dst_next;
logic [47:0] mcf_eth_src_reg = 0, mcf_eth_src_next;
logic [15:0] mcf_eth_type_reg = 0, mcf_eth_type_next;
logic [15:0] mcf_opcode_reg = 0, mcf_opcode_next;
logic [MCF_PARAMS_SIZE*8-1:0] mcf_params_reg = 0, mcf_params_next;
logic [ID_W-1:0] mcf_id_reg = 0, mcf_id_next;
logic [DEST_W-1:0] mcf_dest_reg = 0, mcf_dest_next;
logic [USER_W-1:0] mcf_user_reg = 0, mcf_user_next;
logic stat_rx_mcf_reg = 1'b0, stat_rx_mcf_next;
assign s_axis.tready = s_axis_tready_reg;
assign mcf_valid = mcf_valid_reg;
assign mcf_eth_dst = mcf_eth_dst_reg;
assign mcf_eth_src = mcf_eth_src_reg;
assign mcf_eth_type = mcf_eth_type_reg;
assign mcf_opcode = mcf_opcode_reg;
assign mcf_params = mcf_params_reg;
assign mcf_id = mcf_id_reg;
assign mcf_dest = mcf_dest_reg;
assign mcf_user = mcf_user_reg;
assign stat_rx_mcf = stat_rx_mcf_reg;
wire mcf_eth_dst_mcast_match = mcf_eth_dst_next == cfg_mcf_rx_eth_dst_mcast;
wire mcf_eth_dst_ucast_match = mcf_eth_dst_next == cfg_mcf_rx_eth_dst_ucast;
wire mcf_eth_src_match = mcf_eth_src_next == cfg_mcf_rx_eth_src;
wire mcf_eth_type_match = mcf_eth_type_next == cfg_mcf_rx_eth_type;
wire mcf_opcode_lfc_match = mcf_opcode_next == cfg_mcf_rx_opcode_lfc;
wire mcf_opcode_pfc_match = mcf_opcode_next == cfg_mcf_rx_opcode_pfc;
wire mcf_eth_dst_match = ((mcf_eth_dst_mcast_match && cfg_mcf_rx_check_eth_dst_mcast) ||
(mcf_eth_dst_ucast_match && cfg_mcf_rx_check_eth_dst_ucast) ||
(!cfg_mcf_rx_check_eth_dst_mcast && !cfg_mcf_rx_check_eth_dst_ucast));
wire mcf_opcode_match = ((mcf_opcode_lfc_match && cfg_mcf_rx_check_opcode_lfc) ||
(mcf_opcode_pfc_match && cfg_mcf_rx_check_opcode_pfc) ||
(!cfg_mcf_rx_check_opcode_lfc && !cfg_mcf_rx_check_opcode_pfc));
wire mcf_match = (mcf_eth_dst_match &&
(mcf_eth_src_match || !cfg_mcf_rx_check_eth_src) &&
mcf_eth_type_match && mcf_opcode_match);
always_comb begin
read_mcf_next = read_mcf_reg;
mcf_frame_next = mcf_frame_reg;
ptr_next = ptr_reg;
// pass through data
m_axis_tdata_int = s_axis.tdata;
m_axis_tkeep_int = s_axis.tkeep;
m_axis_tvalid_int = s_axis.tvalid;
m_axis_tlast_int = s_axis.tlast;
m_axis_tid_int = s_axis.tid;
m_axis_tdest_int = s_axis.tdest;
m_axis_tuser_int = USER_W'(s_axis.tuser);
s_axis_tready_next = m_axis_tready_int_early || !USE_READY;
mcf_valid_next = 1'b0;
mcf_eth_dst_next = mcf_eth_dst_reg;
mcf_eth_src_next = mcf_eth_src_reg;
mcf_eth_type_next = mcf_eth_type_reg;
mcf_opcode_next = mcf_opcode_reg;
mcf_params_next = mcf_params_reg;
mcf_id_next = mcf_id_reg;
mcf_dest_next = mcf_dest_reg;
mcf_user_next = mcf_user_reg;
stat_rx_mcf_next = 1'b0;
if ((s_axis.tready || !USE_READY) && s_axis.tvalid) begin
if (read_mcf_reg) begin
ptr_next = ptr_reg + 1;
mcf_id_next = s_axis.tid;
mcf_dest_next = s_axis.tdest;
mcf_user_next = s_axis.tuser;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == PTR_W'(offset/BYTE_LANES)) begin \
field = s_axis.tdata[(offset%BYTE_LANES)*8 +: 8]; \
end
`_HEADER_FIELD_(0, mcf_eth_dst_next[5*8 +: 8])
`_HEADER_FIELD_(1, mcf_eth_dst_next[4*8 +: 8])
`_HEADER_FIELD_(2, mcf_eth_dst_next[3*8 +: 8])
`_HEADER_FIELD_(3, mcf_eth_dst_next[2*8 +: 8])
`_HEADER_FIELD_(4, mcf_eth_dst_next[1*8 +: 8])
`_HEADER_FIELD_(5, mcf_eth_dst_next[0*8 +: 8])
`_HEADER_FIELD_(6, mcf_eth_src_next[5*8 +: 8])
`_HEADER_FIELD_(7, mcf_eth_src_next[4*8 +: 8])
`_HEADER_FIELD_(8, mcf_eth_src_next[3*8 +: 8])
`_HEADER_FIELD_(9, mcf_eth_src_next[2*8 +: 8])
`_HEADER_FIELD_(10, mcf_eth_src_next[1*8 +: 8])
`_HEADER_FIELD_(11, mcf_eth_src_next[0*8 +: 8])
`_HEADER_FIELD_(12, mcf_eth_type_next[1*8 +: 8])
`_HEADER_FIELD_(13, mcf_eth_type_next[0*8 +: 8])
`_HEADER_FIELD_(14, mcf_opcode_next[1*8 +: 8])
`_HEADER_FIELD_(15, mcf_opcode_next[0*8 +: 8])
if (ptr_reg == PTR_W'(0/BYTE_LANES)) begin
// ensure params field gets cleared
mcf_params_next = 0;
end
for (integer k = 0; k < MCF_PARAMS_SIZE; k = k + 1) begin
if (ptr_reg == PTR_W'((16+k)/BYTE_LANES)) begin
mcf_params_next[k*8 +: 8] = s_axis.tdata[((16+k)%BYTE_LANES)*8 +: 8];
end
end
if (ptr_reg == PTR_W'(15/BYTE_LANES) && (!KEEP_EN || s_axis.tkeep[13%BYTE_LANES])) begin
// record match at end of opcode field
mcf_frame_next = mcf_match && cfg_mcf_rx_enable;
end
if (ptr_reg == PTR_W'((HDR_SIZE-1)/BYTE_LANES)) begin
read_mcf_next = 1'b0;
end
`undef _HEADER_FIELD_
end
if (s_axis.tlast) begin
if (s_axis.tuser[0]) begin
// frame marked invalid
end else if (mcf_frame_next) begin
if (!cfg_mcf_rx_forward) begin
// mark frame invalid
m_axis_tuser_int[0] = 1'b1;
end
// transfer out MAC control frame
mcf_valid_next = 1'b1;
stat_rx_mcf_next = 1'b1;
end
read_mcf_next = 1'b1;
mcf_frame_next = 1'b0;
ptr_next = '0;
end
end
end
always_ff @(posedge clk) begin
read_mcf_reg <= read_mcf_next;
mcf_frame_reg <= mcf_frame_next;
ptr_reg <= ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
mcf_valid_reg <= mcf_valid_next;
mcf_eth_dst_reg <= mcf_eth_dst_next;
mcf_eth_src_reg <= mcf_eth_src_next;
mcf_eth_type_reg <= mcf_eth_type_next;
mcf_opcode_reg <= mcf_opcode_next;
mcf_params_reg <= mcf_params_next;
mcf_id_reg <= mcf_id_next;
mcf_dest_reg <= mcf_dest_next;
mcf_user_reg <= mcf_user_next;
stat_rx_mcf_reg <= stat_rx_mcf_next;
if (rst) begin
read_mcf_reg <= 1'b1;
mcf_frame_reg <= 1'b0;
ptr_reg <= '0;
s_axis_tready_reg <= 1'b0;
mcf_valid_reg <= 1'b0;
stat_rx_mcf_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_W-1:0] m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] m_axis_tkeep_reg = '0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] m_axis_tid_reg = '0;
reg [DEST_W-1:0] m_axis_tdest_reg = '0;
reg [USER_W-1:0] m_axis_tuser_reg = '0;
reg [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] temp_m_axis_tid_reg = '0;
reg [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
reg [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = m_axis_tlast_reg;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || !USE_READY || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !USE_READY || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready || !USE_READY) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall

394
rtl/eth/taxi_mac_ctrl_tx.sv Normal file
View File

@@ -0,0 +1,394 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2023-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MAC control transmitter
*/
module taxi_mac_ctrl_tx #
(
parameter ID_W = 8,
parameter DEST_W = 8,
parameter USER_W = 1,
parameter MCF_PARAMS_SIZE = 18
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream input (sink)
*/
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis,
/*
* MAC control frame interface
*/
input wire logic mcf_valid,
output wire logic mcf_ready,
input wire logic [47:0] mcf_eth_dst,
input wire logic [47:0] mcf_eth_src,
input wire logic [15:0] mcf_eth_type,
input wire logic [15:0] mcf_opcode,
input wire logic [MCF_PARAMS_SIZE*8-1:0] mcf_params,
input wire logic [ID_W-1:0] mcf_id,
input wire logic [DEST_W-1:0] mcf_dest,
input wire logic [USER_W-1:0] mcf_user,
/*
* Pause interface
*/
input wire logic tx_pause_req,
output wire logic tx_pause_ack,
/*
* Status
*/
output wire logic stat_tx_mcf
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam BYTE_LANES = KEEP_EN ? KEEP_W : 1;
localparam HDR_SIZE = 60;
localparam CYCLE_CNT = (HDR_SIZE+BYTE_LANES-1)/BYTE_LANES;
localparam PTR_W = $clog2(CYCLE_CNT+1);
localparam OFFSET = HDR_SIZE % BYTE_LANES;
// check configuration
if (BYTE_LANES * 8 != DATA_W)
$fatal(0, "Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
if (MCF_PARAMS_SIZE > 44)
$fatal(0, "Error: Maximum MCF_PARAMS_SIZE is 44 bytes (instance %m)");
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
/*
MAC control frame
Field Length
Destination MAC address 6 octets [01:80:C2:00:00:01]
Source MAC address 6 octets
Ethertype 2 octets [0x8808]
Opcode 2 octets
Parameters 0-44 octets
This module manages the transmission of MAC control frames. Control frames
are accepted in parallel, serialized, and merged at a higher priority with
data traffic.
*/
logic send_data_reg = 1'b0, send_data_next;
logic send_mcf_reg = 1'b0, send_mcf_next;
logic [PTR_W-1:0] ptr_reg = 0, ptr_next;
logic s_axis_tready_reg = 1'b0, s_axis_tready_next;
logic mcf_ready_reg = 1'b0, mcf_ready_next;
logic tx_pause_ack_reg = 1'b0, tx_pause_ack_next;
logic stat_tx_mcf_reg = 1'b0, stat_tx_mcf_next;
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [ID_W-1:0] m_axis_tid_int;
logic [DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis.tready = s_axis_tready_reg;
assign mcf_ready = mcf_ready_reg;
assign tx_pause_ack = tx_pause_ack_reg;
assign stat_tx_mcf = stat_tx_mcf_reg;
always_comb begin
send_data_next = send_data_reg;
send_mcf_next = send_mcf_reg;
ptr_next = ptr_reg;
s_axis_tready_next = 1'b0;
mcf_ready_next = 1'b0;
tx_pause_ack_next = tx_pause_ack_reg;
stat_tx_mcf_next = 1'b0;
m_axis_tdata_int = 0;
m_axis_tkeep_int = 0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tid_int = 0;
m_axis_tdest_int = 0;
m_axis_tuser_int = 0;
if (!send_data_reg && !send_mcf_reg) begin
m_axis_tdata_int = s_axis.tdata;
m_axis_tkeep_int = s_axis.tkeep;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = s_axis.tlast;
m_axis_tid_int = s_axis.tid;
m_axis_tdest_int = s_axis.tdest;
m_axis_tuser_int = USER_W'(s_axis.tuser);
s_axis_tready_next = m_axis_tready_int_early && !tx_pause_req;
tx_pause_ack_next = tx_pause_req;
if (s_axis.tvalid && s_axis.tready) begin
s_axis_tready_next = m_axis_tready_int_early;
tx_pause_ack_next = 1'b0;
m_axis_tvalid_int = 1'b1;
if (s_axis.tlast) begin
s_axis_tready_next = m_axis_tready_int_early && !mcf_valid && !mcf_ready;
send_data_next = 1'b0;
end else begin
send_data_next = 1'b1;
end
end else if (mcf_valid) begin
s_axis_tready_next = 1'b0;
ptr_next = 0;
send_mcf_next = 1'b1;
mcf_ready_next = (CYCLE_CNT == 1) && m_axis_tready_int_early;
end
end
if (send_data_reg) begin
m_axis_tdata_int = s_axis.tdata;
m_axis_tkeep_int = s_axis.tkeep;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = s_axis.tlast;
m_axis_tid_int = s_axis.tid;
m_axis_tdest_int = s_axis.tdest;
m_axis_tuser_int = USER_W'(s_axis.tuser);
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis.tvalid && s_axis.tready) begin
m_axis_tvalid_int = 1'b1;
if (s_axis.tlast) begin
s_axis_tready_next = m_axis_tready_int_early && !tx_pause_req;
send_data_next = 1'b0;
if (mcf_valid) begin
s_axis_tready_next = 1'b0;
ptr_next = 0;
send_mcf_next = 1'b1;
mcf_ready_next = (CYCLE_CNT == 1) && m_axis_tready_int_early;
end
end else begin
send_data_next = 1'b1;
end
end
end
if (send_mcf_reg) begin
mcf_ready_next = (CYCLE_CNT == 1 || ptr_reg == PTR_W'(CYCLE_CNT-1)) && m_axis_tready_int_early;
if (m_axis_tready_int_reg) begin
ptr_next = ptr_reg + 1;
m_axis_tvalid_int = 1'b1;
m_axis_tid_int = mcf_id;
m_axis_tdest_int = mcf_dest;
m_axis_tuser_int = mcf_user;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == PTR_W'(offset/BYTE_LANES)) begin \
m_axis_tdata_int[(offset%BYTE_LANES)*8 +: 8] = field; \
m_axis_tkeep_int[offset%BYTE_LANES] = 1'b1; \
end
`_HEADER_FIELD_(0, mcf_eth_dst[5*8 +: 8])
`_HEADER_FIELD_(1, mcf_eth_dst[4*8 +: 8])
`_HEADER_FIELD_(2, mcf_eth_dst[3*8 +: 8])
`_HEADER_FIELD_(3, mcf_eth_dst[2*8 +: 8])
`_HEADER_FIELD_(4, mcf_eth_dst[1*8 +: 8])
`_HEADER_FIELD_(5, mcf_eth_dst[0*8 +: 8])
`_HEADER_FIELD_(6, mcf_eth_src[5*8 +: 8])
`_HEADER_FIELD_(7, mcf_eth_src[4*8 +: 8])
`_HEADER_FIELD_(8, mcf_eth_src[3*8 +: 8])
`_HEADER_FIELD_(9, mcf_eth_src[2*8 +: 8])
`_HEADER_FIELD_(10, mcf_eth_src[1*8 +: 8])
`_HEADER_FIELD_(11, mcf_eth_src[0*8 +: 8])
`_HEADER_FIELD_(12, mcf_eth_type[1*8 +: 8])
`_HEADER_FIELD_(13, mcf_eth_type[0*8 +: 8])
`_HEADER_FIELD_(14, mcf_opcode[1*8 +: 8])
`_HEADER_FIELD_(15, mcf_opcode[0*8 +: 8])
for (integer k = 0; k < HDR_SIZE-16; k = k + 1) begin
if (ptr_reg == PTR_W'((16+k)/BYTE_LANES)) begin
if (k < MCF_PARAMS_SIZE) begin
m_axis_tdata_int[((16+k)%BYTE_LANES)*8 +: 8] = mcf_params[k*8 +: 8];
end else begin
m_axis_tdata_int[((16+k)%BYTE_LANES)*8 +: 8] = 0;
end
m_axis_tkeep_int[(16+k)%BYTE_LANES] = 1'b1;
end
end
if (ptr_reg == PTR_W'((HDR_SIZE-1)/BYTE_LANES)) begin
s_axis_tready_next = m_axis_tready_int_early && !tx_pause_req;
mcf_ready_next = 1'b0;
m_axis_tlast_int = 1'b1;
send_mcf_next = 1'b0;
stat_tx_mcf_next = 1'b1;
end else begin
mcf_ready_next = (ptr_next == PTR_W'(CYCLE_CNT-1)) && m_axis_tready_int_early;
end
`undef _HEADER_FIELD_
end
end
end
always_ff @(posedge clk) begin
send_data_reg <= send_data_next;
send_mcf_reg <= send_mcf_next;
ptr_reg <= ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
mcf_ready_reg <= mcf_ready_next;
tx_pause_ack_reg <= tx_pause_ack_next;
stat_tx_mcf_reg <= stat_tx_mcf_next;
if (rst) begin
send_data_reg <= 1'b0;
send_mcf_reg <= 1'b0;
ptr_reg <= 0;
s_axis_tready_reg <= 1'b0;
mcf_ready_reg <= 1'b0;
tx_pause_ack_reg <= 1'b0;
stat_tx_mcf_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_W-1:0] m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] m_axis_tkeep_reg = '0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] m_axis_tid_reg = '0;
reg [DEST_W-1:0] m_axis_tdest_reg = '0;
reg [USER_W-1:0] m_axis_tuser_reg = '0;
reg [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
reg [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_W-1:0] temp_m_axis_tid_reg = '0;
reg [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
reg [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = m_axis_tlast_reg;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,52 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2023-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
DUT = taxi_mac_ctrl_rx
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += ../../../rtl/eth/$(DUT).sv
VERILOG_SOURCES += ../../../rtl/axis/taxi_axis_if.sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_DATA_W := 8
export PARAM_ID_W := 8
export PARAM_DEST_W := 8
export PARAM_USER_W := 1
export PARAM_USE_READY := 1
export PARAM_MCF_PARAMS_SIZE := 18
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,592 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2023-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
from scapy.layers.l2 import Ether
import pytest
import cocotb_test.simulator
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamSource, AxiStreamSink, AxiStreamFrame
from cocotbext.axi.stream import define_stream
McfBus, McfTransaction, McfSource, McfSink, McfMonitor = define_stream("Mcf",
signals=["valid", "eth_dst", "eth_src", "eth_type", "opcode", "params"],
optional_signals=["ready", "id", "dest", "user"]
)
class TB:
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 8, units="ns").start())
self.source = AxiStreamSource(AxiStreamBus.from_entity(dut.s_axis), dut.clk, dut.rst)
self.sink = AxiStreamSink(AxiStreamBus.from_entity(dut.m_axis), dut.clk, dut.rst)
self.mcf_sink = McfSink(McfBus.from_prefix(dut, "mcf"), dut.clk, dut.rst)
dut.cfg_mcf_rx_eth_dst_mcast.setimmediatevalue(0)
dut.cfg_mcf_rx_check_eth_dst_mcast.setimmediatevalue(0)
dut.cfg_mcf_rx_eth_dst_ucast.setimmediatevalue(0)
dut.cfg_mcf_rx_check_eth_dst_ucast.setimmediatevalue(0)
dut.cfg_mcf_rx_eth_src.setimmediatevalue(0)
dut.cfg_mcf_rx_check_eth_src.setimmediatevalue(0)
dut.cfg_mcf_rx_eth_type.setimmediatevalue(0)
dut.cfg_mcf_rx_opcode_lfc.setimmediatevalue(0)
dut.cfg_mcf_rx_check_opcode_lfc.setimmediatevalue(0)
dut.cfg_mcf_rx_opcode_pfc.setimmediatevalue(0)
dut.cfg_mcf_rx_check_opcode_pfc.setimmediatevalue(0)
dut.cfg_mcf_rx_forward.setimmediatevalue(0)
dut.cfg_mcf_rx_enable.setimmediatevalue(0)
def set_idle_generator(self, generator=None):
if generator:
self.source.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.sink.set_pause_generator(generator())
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def send(self, pkt):
await self.source.send(bytes(pkt))
async def recv(self):
rx_frame = await self.sink.recv()
assert not rx_frame.tuser
return Ether(bytes(rx_frame))
async def recv_mcf(self):
rx_frame = await self.mcf_sink.recv()
data = bytearray()
data.extend(rx_frame.eth_dst.integer.to_bytes(6, 'big'))
data.extend(rx_frame.eth_src.integer.to_bytes(6, 'big'))
data.extend(rx_frame.eth_type.integer.to_bytes(2, 'big'))
data.extend(rx_frame.opcode.integer.to_bytes(2, 'big'))
data.extend(rx_frame.params.integer.to_bytes(44, 'little'))
return Ether(data)
async def run_test_data(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
id_width = len(tb.source.bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = 1
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for test_data in [payload_data(x) for x in payload_lengths()]:
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id
test_frame.tdest = cur_id | (0 << src_shift)
test_frames.append(test_frame)
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % max_count
for test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tid == test_frame.tid
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
assert tb.mcf_sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_mcf(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
id_width = len(tb.source.bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = 1
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
dut.cfg_mcf_rx_eth_dst_mcast.value = 0x0180C2000001
dut.cfg_mcf_rx_check_eth_dst_mcast.value = 0
dut.cfg_mcf_rx_eth_dst_ucast.value = 0xDAD1D2D3D4D5
dut.cfg_mcf_rx_check_eth_dst_ucast.value = 0
dut.cfg_mcf_rx_eth_src.value = 0x5A5152535455
dut.cfg_mcf_rx_check_eth_src.value = 0
dut.cfg_mcf_rx_eth_type.value = 0x8808
dut.cfg_mcf_rx_opcode_lfc.value = 0x0001
dut.cfg_mcf_rx_check_opcode_lfc.value = 0
dut.cfg_mcf_rx_opcode_pfc.value = 0x0101
dut.cfg_mcf_rx_check_opcode_pfc.value = 0
dut.cfg_mcf_rx_forward.value = 0
dut.cfg_mcf_rx_enable.value = 1
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_pkts = []
for payload in [payload_data(x) for x in payload_lengths()]:
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts.append((cur_id, test_pkt.copy()))
test_frame = AxiStreamFrame(bytes(test_pkt))
test_frame.tid = cur_id
test_frame.tdest = cur_id | (1 << src_shift)
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % max_count
for cur_id, test_pkt in test_pkts:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == bytes(test_pkt)
assert rx_frame.tid == cur_id
assert rx_frame.tdest == cur_id | (1 << src_shift)
assert rx_frame.tuser
rx_pkt = await tb.recv_mcf()
tb.log.info("RX packet: %s", repr(rx_pkt))
# check prefix as padding may be different
assert bytes(rx_pkt).find(bytes(test_pkt)) == 0
assert tb.sink.empty()
assert tb.mcf_sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_tuser_assert(dut):
tb = TB(dut)
byte_lanes = tb.source.byte_lanes
await tb.reset()
dut.cfg_mcf_rx_eth_dst_mcast.value = 0x0180C2000001
dut.cfg_mcf_rx_check_eth_dst_mcast.value = 0
dut.cfg_mcf_rx_eth_dst_ucast.value = 0xDAD1D2D3D4D5
dut.cfg_mcf_rx_check_eth_dst_ucast.value = 0
dut.cfg_mcf_rx_eth_src.value = 0x5A5152535455
dut.cfg_mcf_rx_check_eth_src.value = 0
dut.cfg_mcf_rx_eth_type.value = 0x8808
dut.cfg_mcf_rx_opcode_lfc.value = 0x0001
dut.cfg_mcf_rx_check_opcode_lfc.value = 0
dut.cfg_mcf_rx_opcode_pfc.value = 0x0101
dut.cfg_mcf_rx_check_opcode_pfc.value = 0
dut.cfg_mcf_rx_forward.value = 0
dut.cfg_mcf_rx_enable.value = 1
# data
payload = bytearray(itertools.islice(itertools.cycle(range(256)), byte_lanes*16))
eth = Ether(src='5A:51:52:53:54:55', dst='DA:D1:D2:D3:D4:D5', type=0x8000)
test_pkt = eth / payload
test_frame = AxiStreamFrame(bytes(test_pkt), tuser=1)
await tb.source.send(test_frame)
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tuser
# MAC control
payload = bytearray(itertools.islice(itertools.cycle(range(256)), 18))
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
test_frame = AxiStreamFrame(bytes(test_pkt), tuser=1)
await tb.source.send(test_frame)
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tuser
assert tb.sink.empty()
assert tb.mcf_sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_mcf_filter(dut):
tb = TB(dut)
await tb.reset()
dut.cfg_mcf_rx_eth_dst_mcast.value = 0x0180C2000001
dut.cfg_mcf_rx_check_eth_dst_mcast.value = 0
dut.cfg_mcf_rx_eth_dst_ucast.value = 0xDAD1D2D3D4D5
dut.cfg_mcf_rx_check_eth_dst_ucast.value = 0
dut.cfg_mcf_rx_eth_src.value = 0x5A5152535455
dut.cfg_mcf_rx_check_eth_src.value = 0
dut.cfg_mcf_rx_eth_type.value = 0x8808
dut.cfg_mcf_rx_opcode_lfc.value = 0x0001
dut.cfg_mcf_rx_check_opcode_lfc.value = 0
dut.cfg_mcf_rx_opcode_pfc.value = 0x0101
dut.cfg_mcf_rx_check_opcode_pfc.value = 0
dut.cfg_mcf_rx_forward.value = 0
dut.cfg_mcf_rx_enable.value = 1
async def check(tb, pkt, should_match):
await tb.source.send(bytes(pkt))
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == bytes(pkt)
if should_match:
assert rx_frame.tuser
rx_pkt = await tb.recv_mcf()
assert bytes(rx_pkt).find(bytes(pkt)) == 0
else:
assert not rx_frame.tuser
assert tb.sink.empty()
assert tb.mcf_sink.empty()
payload = bytearray(itertools.islice(itertools.cycle(range(256)), 18))
# Multicast destination address
dut.cfg_mcf_rx_check_eth_dst_mcast.value = 1
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, True)
eth = Ether(src='5A:51:52:53:54:55', dst='DA:D1:D2:D3:D4:D5', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, False)
dut.cfg_mcf_rx_check_eth_dst_mcast.value = 0
# Unicast destination address
dut.cfg_mcf_rx_check_eth_dst_ucast.value = 1
eth = Ether(src='5A:51:52:53:54:55', dst='DA:D1:D2:D3:D4:D5', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, True)
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, False)
dut.cfg_mcf_rx_check_eth_dst_ucast.value = 0
# Source address
dut.cfg_mcf_rx_check_eth_src.value = 1
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, True)
eth = Ether(src='5A:51:52:AA:AA:AA', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, False)
dut.cfg_mcf_rx_check_eth_src.value = 0
# Ethertype
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, True)
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8880)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, False)
# Opcode
dut.cfg_mcf_rx_check_opcode_lfc.value = 1
dut.cfg_mcf_rx_check_opcode_pfc.value = 1
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x01' + payload)
await check(tb, test_pkt, True)
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x01\x01' + payload)
await check(tb, test_pkt, True)
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (b'\x00\x00' + payload)
await check(tb, test_pkt, False)
dut.cfg_mcf_rx_check_opcode_lfc.value = 0
dut.cfg_mcf_rx_check_opcode_pfc.value = 0
assert tb.sink.empty()
assert tb.mcf_sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.source.byte_lanes
id_width = len(tb.source.bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = 1
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
dut.cfg_mcf_rx_eth_dst_mcast.value = 0x0180C2000001
dut.cfg_mcf_rx_check_eth_dst_mcast.value = 0
dut.cfg_mcf_rx_eth_dst_ucast.value = 0xDAD1D2D3D4D5
dut.cfg_mcf_rx_check_eth_dst_ucast.value = 0
dut.cfg_mcf_rx_eth_src.value = 0x5A5152535455
dut.cfg_mcf_rx_check_eth_src.value = 0
dut.cfg_mcf_rx_eth_type.value = 0x8808
dut.cfg_mcf_rx_opcode_lfc.value = 0x0001
dut.cfg_mcf_rx_check_opcode_lfc.value = 0
dut.cfg_mcf_rx_opcode_pfc.value = 0x0101
dut.cfg_mcf_rx_check_opcode_pfc.value = 0
dut.cfg_mcf_rx_forward.value = 0
dut.cfg_mcf_rx_enable.value = 1
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_pkts = []
for k in range(256):
if random.randrange(8) != 0:
length = random.randint(1, byte_lanes*16)
payload = bytearray(itertools.islice(itertools.cycle(range(256)), length))
eth = Ether(src='5A:51:52:53:54:55', dst='DA:D1:D2:D3:D4:D5', type=0x8000)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts.append((cur_id, test_pkt.copy()))
dest = cur_id | (0 << src_shift)
else:
length = random.randint(1, 18)
payload = bytearray(itertools.islice(itertools.cycle(range(256)), length))
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts.append((cur_id, test_pkt.copy()))
dest = cur_id | (1 << src_shift)
test_frame = AxiStreamFrame(bytes(test_pkt))
test_frame.tid = cur_id
test_frame.tdest = dest
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % max_count
for cur_id, test_pkt in test_pkts:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == bytes(test_pkt)
assert rx_frame.tid == cur_id
assert (rx_frame.tdest & count_mask) == cur_id
if rx_frame.tdest >> src_shift:
assert rx_frame.tuser
rx_pkt = await tb.recv_mcf()
tb.log.info("RX packet: %s", repr(rx_pkt))
# check prefix as padding may be different
assert bytes(rx_pkt).find(bytes(test_pkt)) == 0
else:
assert not rx_frame.tuser
for k in range(1000):
await RisingEdge(dut.clk)
assert tb.sink.empty()
assert tb.mcf_sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
def size_list():
return list(range(1, 128)) + [512, 1514, 9214] + [60]*10
def mcf_size_list():
return list(range(1, 19))
def incrementing_payload(length):
return bytes(itertools.islice(itertools.cycle(range(256)), length))
if cocotb.SIM_NAME:
factory = TestFactory(run_test_data)
factory.add_option("payload_lengths", [size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
factory = TestFactory(run_test_mcf)
factory.add_option("payload_lengths", [mcf_size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
factory = TestFactory(run_test_tuser_assert)
factory.generate_tests()
factory = TestFactory(run_test_mcf_filter)
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("data_w", [8, 16, 32, 64, 128, 256, 512])
def test_taxi_mac_ctrl_rx(request, data_w):
dut = "taxi_mac_ctrl_rx"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, "eth", f"{dut}.sv"),
os.path.join(rtl_dir, "axis", "taxi_axis_if.sv"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['DATA_W'] = data_w
parameters['ID_W'] = 8
parameters['DEST_W'] = 8
parameters['USER_W'] = 1
parameters['USE_READY'] = 1
parameters['MCF_PARAMS_SIZE'] = 18
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,121 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MAC control receiver testbench
*/
module test_taxi_mac_ctrl_rx #
(
/* verilator lint_off WIDTHTRUNC */
parameter DATA_W = 64,
parameter ID_W = 8,
parameter DEST_W = 8,
parameter USER_W = 1,
parameter logic USE_READY = 1'b0,
parameter MCF_PARAMS_SIZE = 18
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axis_if #(.DATA_W(DATA_W), .ID_EN(1), .ID_W(ID_W), .DEST_EN(1), .DEST_W(DEST_W), .USER_EN(1), .USER_W(USER_W)) s_axis(), m_axis();
logic mcf_valid;
logic [47:0] mcf_eth_dst;
logic [47:0] mcf_eth_src;
logic [15:0] mcf_eth_type;
logic [15:0] mcf_opcode;
logic [MCF_PARAMS_SIZE*8-1:0] mcf_params;
logic [ID_W-1:0] mcf_id;
logic [DEST_W-1:0] mcf_dest;
logic [USER_W-1:0] mcf_user;
logic [47:0] cfg_mcf_rx_eth_dst_mcast;
logic cfg_mcf_rx_check_eth_dst_mcast;
logic [47:0] cfg_mcf_rx_eth_dst_ucast;
logic cfg_mcf_rx_check_eth_dst_ucast;
logic [47:0] cfg_mcf_rx_eth_src;
logic cfg_mcf_rx_check_eth_src;
logic [15:0] cfg_mcf_rx_eth_type;
logic [15:0] cfg_mcf_rx_opcode_lfc;
logic cfg_mcf_rx_check_opcode_lfc;
logic [15:0] cfg_mcf_rx_opcode_pfc;
logic cfg_mcf_rx_check_opcode_pfc;
logic cfg_mcf_rx_forward;
logic cfg_mcf_rx_enable;
logic stat_rx_mcf;
taxi_mac_ctrl_rx #(
.ID_W(ID_W),
.DEST_W(DEST_W),
.USER_W(USER_W),
.USE_READY(USE_READY),
.MCF_PARAMS_SIZE(MCF_PARAMS_SIZE)
)
uut (
.clk(clk),
.rst(rst),
/*
* AXI4-Stream input (sink)
*/
.s_axis(s_axis),
/*
* AXI4-Stream output (source)
*/
.m_axis(m_axis),
/*
* MAC control frame interface
*/
.mcf_valid(mcf_valid),
.mcf_eth_dst(mcf_eth_dst),
.mcf_eth_src(mcf_eth_src),
.mcf_eth_type(mcf_eth_type),
.mcf_opcode(mcf_opcode),
.mcf_params(mcf_params),
.mcf_id(mcf_id),
.mcf_dest(mcf_dest),
.mcf_user(mcf_user),
/*
* Configuration
*/
.cfg_mcf_rx_eth_dst_mcast(cfg_mcf_rx_eth_dst_mcast),
.cfg_mcf_rx_check_eth_dst_mcast(cfg_mcf_rx_check_eth_dst_mcast),
.cfg_mcf_rx_eth_dst_ucast(cfg_mcf_rx_eth_dst_ucast),
.cfg_mcf_rx_check_eth_dst_ucast(cfg_mcf_rx_check_eth_dst_ucast),
.cfg_mcf_rx_eth_src(cfg_mcf_rx_eth_src),
.cfg_mcf_rx_check_eth_src(cfg_mcf_rx_check_eth_src),
.cfg_mcf_rx_eth_type(cfg_mcf_rx_eth_type),
.cfg_mcf_rx_opcode_lfc(cfg_mcf_rx_opcode_lfc),
.cfg_mcf_rx_check_opcode_lfc(cfg_mcf_rx_check_opcode_lfc),
.cfg_mcf_rx_opcode_pfc(cfg_mcf_rx_opcode_pfc),
.cfg_mcf_rx_check_opcode_pfc(cfg_mcf_rx_check_opcode_pfc),
.cfg_mcf_rx_forward(cfg_mcf_rx_forward),
.cfg_mcf_rx_enable(cfg_mcf_rx_enable),
/*
* Status
*/
.stat_rx_mcf(stat_rx_mcf)
);
endmodule
`resetall

View File

@@ -0,0 +1,51 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2023-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
DUT = taxi_mac_ctrl_tx
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += ../../../rtl/eth/$(DUT).sv
VERILOG_SOURCES += ../../../rtl/axis/taxi_axis_if.sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_DATA_W := 8
export PARAM_ID_W := 8
export PARAM_DEST_W := 8
export PARAM_USER_W := 1
export PARAM_MCF_PARAMS_SIZE := 18
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,473 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2023-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
from scapy.layers.l2 import Ether
from scapy.utils import mac2str
import pytest
import cocotb_test.simulator
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import FallingEdge, RisingEdge, Event
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamSource, AxiStreamSink, AxiStreamFrame
from cocotbext.axi.stream import define_stream
McfBus, McfTransaction, McfSource, McfSink, McfMonitor = define_stream("Mcf",
signals=["valid", "eth_dst", "eth_src", "eth_type", "opcode", "params"],
optional_signals=["ready", "id", "dest", "user"]
)
class TB:
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 8, units="ns").start())
self.source = AxiStreamSource(AxiStreamBus.from_entity(dut.s_axis), dut.clk, dut.rst)
self.sink = AxiStreamSink(AxiStreamBus.from_entity(dut.m_axis), dut.clk, dut.rst)
self.mcf_source = McfSource(McfBus.from_prefix(dut, "mcf"), dut.clk, dut.rst)
dut.tx_pause_req.setimmediatevalue(0)
def set_idle_generator(self, generator=None):
if generator:
self.source.set_pause_generator(generator())
self.mcf_source.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.sink.set_pause_generator(generator())
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def send(self, pkt):
await self.source.send(bytes(pkt))
async def send_mcf(self, pkt):
mcf = McfTransaction()
mcf.eth_dst = int.from_bytes(mac2str(pkt[Ether].dst), 'big')
mcf.eth_src = int.from_bytes(mac2str(pkt[Ether].src), 'big')
mcf.eth_type = pkt[Ether].type
mcf.opcode = int.from_bytes(bytes(pkt[Ether].payload)[0:2], 'big')
mcf.params = int.from_bytes(bytes(pkt[Ether].payload)[2:], 'little')
await self.mcf_source.send(mcf)
async def recv(self):
rx_frame = await self.sink.recv()
assert not rx_frame.tuser
return Ether(bytes(rx_frame))
async def run_test_data(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
id_width = len(tb.source.bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = 1
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
dut.tx_pause_req.value = 0
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for test_data in [payload_data(x) for x in payload_lengths()]:
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id | (0 << src_shift)
test_frame.tdest = cur_id
test_frames.append(test_frame)
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % max_count
for test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tid == test_frame.tid
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_mcf(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.reset()
dut.tx_pause_req.value = 0
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_pkts = []
opcode = 1
for payload in [payload_data(x) for x in payload_lengths()]:
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (opcode.to_bytes(2, 'big') + payload)
test_pkts.append(test_pkt.copy())
await tb.send_mcf(test_pkt)
opcode += 1
for test_pkt in test_pkts:
rx_pkt = await tb.recv()
tb.log.info("RX packet: %s", repr(rx_pkt))
# check prefix as frame gets zero-padded
assert bytes(rx_pkt).find(bytes(test_pkt)) == 0
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_tuser_assert(dut):
tb = TB(dut)
await tb.reset()
dut.tx_pause_req.value = 0
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32))
test_frame = AxiStreamFrame(test_data, tuser=1)
await tb.source.send(test_frame)
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_arb_test(dut):
tb = TB(dut)
byte_lanes = tb.source.byte_lanes
id_width = len(tb.source.bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = 1
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
dut.tx_pause_req.value = 0
test_pkts = []
test_frames = []
for k in range(4):
length = byte_lanes*16
payload = bytearray(itertools.islice(itertools.cycle(range(256)), length))
eth = Ether(src='5A:51:52:53:54:55', dst='DA:D1:D2:D3:D4:D5', type=0x8000)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts.append((cur_id, test_pkt.copy()))
test_frame = AxiStreamFrame(bytes(test_pkt), tx_complete=Event())
test_frame.tid = cur_id | (0 << src_shift)
test_frame.tdest = cur_id
test_frames.append(test_frame)
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % max_count
length = random.randint(1, 18)
payload = bytearray(itertools.islice(itertools.cycle(range(256)), length))
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts.append((cur_id, test_pkt.copy()))
# start transmit in the middle of frame 2
await test_frames[1].tx_complete.wait()
for j in range(8):
await RisingEdge(dut.clk)
await tb.send_mcf(test_pkt)
await FallingEdge(dut.mcf_valid)
cur_id = (cur_id + 1) % max_count
for k in [0, 1, 2, 4, 3]:
rx_frame = await tb.sink.recv()
rx_pkt = Ether(bytes(rx_frame))
tb.log.info("RX packet: %s", repr(rx_pkt))
cur_id, test_pkt = test_pkts[k]
if rx_pkt.type == 0x8808:
# check prefix as frame gets zero-padded
assert bytes(rx_pkt).find(bytes(test_pkt)) == 0
assert rx_frame.tid == 0
assert rx_frame.tdest == 0
else:
assert bytes(rx_pkt) == bytes(test_pkt)
assert rx_frame.tid == cur_id | (0 << src_shift)
assert rx_frame.tdest == cur_id
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.source.byte_lanes
id_width = len(tb.source.bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = 1
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
dut.tx_pause_req.value = 0
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_pkts = [list() for x in range(2)]
for k in range(256):
length = random.randint(1, byte_lanes*16)
payload = bytearray(itertools.islice(itertools.cycle(range(256)), length))
eth = Ether(src='5A:51:52:53:54:55', dst='DA:D1:D2:D3:D4:D5', type=0x8000)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts[0].append((cur_id, test_pkt.copy()))
test_frame = AxiStreamFrame(bytes(test_pkt))
test_frame.tid = cur_id | (0 << src_shift)
test_frame.tdest = cur_id
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % max_count
for k in range(16):
length = random.randint(1, 18)
payload = bytearray(itertools.islice(itertools.cycle(range(256)), length))
eth = Ether(src='5A:51:52:53:54:55', dst='01:80:C2:00:00:01', type=0x8808)
test_pkt = eth / (cur_id.to_bytes(2, 'big') + payload)
test_pkts[1].append((cur_id, test_pkt.copy()))
for c in range(random.randint(8, 64)):
await RisingEdge(dut.clk)
await tb.send_mcf(test_pkt)
await FallingEdge(dut.mcf_valid)
cur_id = (cur_id + 1) % max_count
while any(test_pkts):
rx_frame = await tb.sink.recv()
rx_pkt = Ether(bytes(rx_frame))
tb.log.info("RX packet: %s", repr(rx_pkt))
test_pkt = None
if rx_pkt.type == 0x8808:
cur_id, test_pkt = test_pkts[1].pop(0)
# check prefix as frame gets zero-padded
assert bytes(rx_pkt).find(bytes(test_pkt)) == 0
assert rx_frame.tid == 0
assert rx_frame.tdest == 0
else:
cur_id, test_pkt = test_pkts[0].pop(0)
assert bytes(rx_pkt) == bytes(test_pkt)
assert rx_frame.tid == cur_id | (0 << src_shift)
assert rx_frame.tdest == cur_id
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
def size_list():
return list(range(1, 128)) + [512, 1514, 9214] + [60]*10
def mcf_size_list():
return list(range(1, 19))
def incrementing_payload(length):
return bytes(itertools.islice(itertools.cycle(range(256)), length))
if cocotb.SIM_NAME:
factory = TestFactory(run_test_data)
factory.add_option("payload_lengths", [size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
factory = TestFactory(run_test_mcf)
factory.add_option("payload_lengths", [mcf_size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
factory = TestFactory(run_test_tuser_assert)
factory.generate_tests()
factory = TestFactory(run_arb_test)
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("data_w", [8, 16, 32, 64, 128, 256, 512])
def test_taxi_mac_ctrl_tx(request, data_w):
dut = "taxi_mac_ctrl_tx"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, "eth", f"{dut}.sv"),
os.path.join(rtl_dir, "axis", "taxi_axis_if.sv"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['DATA_W'] = data_w
parameters['ID_W'] = 8
parameters['DEST_W'] = 8
parameters['USER_W'] = 1
parameters['MCF_PARAMS_SIZE'] = 18
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,99 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MAC control transmitter testbench
*/
module test_taxi_mac_ctrl_tx #
(
/* verilator lint_off WIDTHTRUNC */
parameter DATA_W = 64,
parameter ID_W = 8,
parameter DEST_W = 8,
parameter USER_W = 1,
parameter MCF_PARAMS_SIZE = 18
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axis_if #(.DATA_W(DATA_W), .ID_EN(1), .ID_W(ID_W), .DEST_EN(1), .DEST_W(DEST_W), .USER_EN(1), .USER_W(USER_W)) s_axis(), m_axis();
logic mcf_valid;
logic mcf_ready;
logic [47:0] mcf_eth_dst;
logic [47:0] mcf_eth_src;
logic [15:0] mcf_eth_type;
logic [15:0] mcf_opcode;
logic [MCF_PARAMS_SIZE*8-1:0] mcf_params;
logic [ID_W-1:0] mcf_id;
logic [DEST_W-1:0] mcf_dest;
logic [USER_W-1:0] mcf_user;
logic tx_pause_req;
logic tx_pause_ack;
logic stat_tx_mcf;
taxi_mac_ctrl_tx #(
.ID_W(ID_W),
.DEST_W(DEST_W),
.USER_W(USER_W),
.MCF_PARAMS_SIZE(MCF_PARAMS_SIZE)
)
uut (
.clk(clk),
.rst(rst),
/*
* AXI4-Stream input (sink)
*/
.s_axis(s_axis),
/*
* AXI4-Stream output (source)
*/
.m_axis(m_axis),
/*
* MAC control frame interface
*/
.mcf_valid(mcf_valid),
.mcf_ready(mcf_ready),
.mcf_eth_dst(mcf_eth_dst),
.mcf_eth_src(mcf_eth_src),
.mcf_eth_type(mcf_eth_type),
.mcf_opcode(mcf_opcode),
.mcf_params(mcf_params),
.mcf_id(mcf_id),
.mcf_dest(mcf_dest),
.mcf_user(mcf_user),
/*
* Pause interface
*/
.tx_pause_req(tx_pause_req),
.tx_pause_ack(tx_pause_ack),
/*
* Status
*/
.stat_tx_mcf(stat_tx_mcf)
);
endmodule
`resetall