xfcp: Add XFCP module for APB

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-09-30 21:01:17 -07:00
parent 86f52189b5
commit a74a49cffb
6 changed files with 1038 additions and 0 deletions

View File

@@ -129,6 +129,7 @@ To facilitate the dual-license model, contributions to the project can only be a
* Signal synchronizer
* Extensible FPGA control protocol (XFCP)
* XFCP UART interface
* XFCP APB module
* XFCP AXI module
* XFCP AXI lite module
* XFCP I2C master module

View File

@@ -0,0 +1,662 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* XFCP APB module
*/
module taxi_xfcp_mod_apb #
(
parameter logic [15:0] XFCP_ID_TYPE = 16'h8001,
parameter XFCP_ID_STR = "AXIL Master",
parameter logic [8*16-1:0] XFCP_EXT_ID = 0,
parameter XFCP_EXT_ID_STR = "",
parameter COUNT_SIZE = 16
)
(
input wire logic clk,
input wire logic rst,
/*
* XFCP upstream port
*/
taxi_axis_if.snk xfcp_usp_ds,
taxi_axis_if.src xfcp_usp_us,
/*
* APB master interface
*/
taxi_apb_if.mst m_apb
);
// TODO various refactoring to fix width issues, among other things
// verilator lint_off WIDTH
localparam DATA_W = m_apb.DATA_W;
localparam ADDR_W = m_apb.ADDR_W;
localparam STRB_W = m_apb.STRB_W;
// for interfaces that are more than one word wide, disable address lines
localparam VALID_ADDR_W = ADDR_W - $clog2(STRB_W);
// width of data port in words
localparam BYTE_LANES = STRB_W;
// size of words
localparam BYTE_W = DATA_W/BYTE_LANES;
localparam BYTE_AW = $clog2((BYTE_W+7)/8);
localparam WORD_AW = BYTE_AW + $clog2(STRB_W);
localparam BYTE_AM = {1'b0, {BYTE_AW{1'b1}}};
localparam WORD_AM = {1'b0, {WORD_AW{1'b1}}};
localparam ADDR_W_ADJ = ADDR_W+BYTE_AW;
localparam COUNT_BYTE_LANES = (COUNT_SIZE+8-1)/8;
localparam ADDR_BYTE_LANES = (ADDR_W_ADJ+8-1)/8;
// check configuration
if (BYTE_LANES * BYTE_W != DATA_W)
$fatal(0, "Error: AXI data width not evenly divisible (instance %m)");
if (2**$clog2(BYTE_LANES) != BYTE_LANES)
$fatal(0, "Error: AXI word width must be even power of two (instance %m)");
if (8*2**$clog2(BYTE_W/8) != BYTE_W)
$fatal(0, "Error: AXI word size must be a power of two multiple of 8 (instance %m)");
localparam START_TAG = 8'hFF;
localparam RPATH_TAG = 8'hFE;
localparam READ_REQ = 8'h10;
localparam READ_RESP = 8'h11;
localparam WRITE_REQ = 8'h12;
localparam WRITE_RESP = 8'h13;
localparam ID_REQ = 8'hFE;
localparam ID_RESP = 8'hFF;
// ID ROM
localparam ID_PTR_W = (XFCP_EXT_ID != 0 || XFCP_EXT_ID_STR != 0) ? 6 : 5;
localparam ID_ROM_SIZE = 2**ID_PTR_W;
reg [7:0] id_rom[ID_ROM_SIZE];
reg [ID_PTR_W-1:0] id_ptr_reg = '0, id_ptr_next;
integer j;
initial begin
// init ID ROM
for (integer i = 0; i < ID_ROM_SIZE; i = i + 1) begin
id_rom[i] = 0;
end
// binary part
{id_rom[1], id_rom[0]} = 16'h8000 | XFCP_ID_TYPE; // module type
{id_rom[3], id_rom[2]} = 16'(ADDR_W); // address bus width
{id_rom[5], id_rom[4]} = 16'(DATA_W); // data bus width
{id_rom[7], id_rom[6]} = 16'(BYTE_W); // word size
{id_rom[9], id_rom[8]} = 16'(COUNT_SIZE); // count size
// string part
// find string length
j = 0;
for (integer i = 1; i <= 16; i = i + 1) begin
if (j == i-1 && (XFCP_ID_STR >> (i*8)) > 0) begin
j = i;
end
end
// pack string
for (integer i = 0; i <= j; i = i + 1) begin
id_rom[i+16] = XFCP_ID_STR[8*(j-i) +: 8];
end
if (XFCP_EXT_ID != 0 || XFCP_EXT_ID_STR != 0) begin
// extended ID
// binary part
for (integer i = 0; i < 16; i = i + 1) begin
id_rom[i+32] = XFCP_EXT_ID[8*i +: 8];
end
// string part
// find string length
j = 0;
for (integer i = 1; i <= 16; i = i + 1) begin
if (j == i-1 && (XFCP_EXT_ID_STR >> (i*8)) > 0) begin
j = i;
end
end
// pack string
for (integer i = 0; i <= j; i = i + 1) begin
id_rom[i+48] = XFCP_EXT_ID_STR[8*(j-i) +: 8];
end
end
end
localparam [3:0]
STATE_IDLE = 4'd0,
STATE_HEADER_1 = 4'd1,
STATE_HEADER_2 = 4'd2,
STATE_HEADER_3 = 4'd3,
STATE_READ_1 = 4'd4,
STATE_READ_2 = 4'd5,
STATE_WRITE_1 = 4'd6,
STATE_WRITE_2 = 4'd7,
STATE_WAIT_LAST = 4'd8,
STATE_ID = 4'd9;
logic [3:0] state_reg = STATE_IDLE, state_next;
logic [COUNT_SIZE-1:0] ptr_reg = '0, ptr_next;
logic [7:0] count_reg = 8'd0, count_next;
logic last_cycle_reg = 1'b0;
logic [ADDR_W_ADJ-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic xfcp_usp_ds_tready_reg = 1'b0, xfcp_usp_ds_tready_next;
logic m_apb_psel_reg = 1'b0, m_apb_psel_next;
logic m_apb_penable_reg = 1'b0, m_apb_penable_next;
logic m_apb_pwrite_reg = 1'b0, m_apb_pwrite_next;
logic [STRB_W-1:0] m_apb_pstrb_reg = '0, m_apb_pstrb_next;
// internal datapath
logic [7:0] xfcp_usp_us_tdata_int;
logic xfcp_usp_us_tvalid_int;
logic xfcp_usp_us_tready_int_reg = 1'b0;
logic xfcp_usp_us_tlast_int;
logic xfcp_usp_us_tuser_int;
wire xfcp_usp_us_tready_int_early;
assign xfcp_usp_ds.tready = xfcp_usp_ds_tready_reg;
assign m_apb.paddr = addr_reg;
assign m_apb.pprot = 3'b010;
assign m_apb.psel = m_apb_psel_reg;
assign m_apb.penable = m_apb_penable_reg;
assign m_apb.pwrite = m_apb_pwrite_reg;
assign m_apb.pwdata = data_reg;
assign m_apb.pstrb = m_apb_pstrb_reg;
assign m_apb.pauser = '0;
assign m_apb.pwuser = '0;
always_comb begin
state_next = STATE_IDLE;
ptr_next = ptr_reg;
count_next = count_reg;
id_ptr_next = id_ptr_reg;
xfcp_usp_ds_tready_next = 1'b0;
xfcp_usp_us_tdata_int = '0;
xfcp_usp_us_tvalid_int = 1'b0;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
addr_next = addr_reg;
data_next = data_reg;
m_apb_psel_next = m_apb_psel_reg;
m_apb_penable_next = m_apb_penable_reg;
m_apb_pwrite_next = m_apb_pwrite_reg;
m_apb_pstrb_next = m_apb_pstrb_reg;
case (state_reg)
STATE_IDLE: begin
// idle, wait for start of packet
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
id_ptr_next = '0;
m_apb_psel_next = 1'b0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
if (xfcp_usp_ds.tlast) begin
// last asserted, ignore cycle
state_next = STATE_IDLE;
end else if (xfcp_usp_ds.tdata == RPATH_TAG) begin
// need to pass through rpath
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_HEADER_1;
end else if (xfcp_usp_ds.tdata == START_TAG) begin
// process header
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_HEADER_2;
end else begin
// bad start byte, drop packet
state_next = STATE_WAIT_LAST;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_HEADER_1: begin
// transfer through header
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
// transfer through
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_ds.tlast) begin
// last asserted in header, mark as such and drop
xfcp_usp_us_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else if (xfcp_usp_ds.tdata == START_TAG) begin
// process header
state_next = STATE_HEADER_2;
end else begin
state_next = STATE_HEADER_1;
end
end else begin
state_next = STATE_HEADER_1;
end
end
STATE_HEADER_2: begin
// read packet type
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
if (xfcp_usp_ds.tdata == READ_REQ && !xfcp_usp_ds.tlast) begin
// start of read
xfcp_usp_us_tdata_int = READ_RESP;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
m_apb_pwrite_next = 1'b0;
count_next = 8'(COUNT_BYTE_LANES+ADDR_BYTE_LANES-1);
state_next = STATE_HEADER_3;
end else if (xfcp_usp_ds.tdata == WRITE_REQ && !xfcp_usp_ds.tlast) begin
// start of write
xfcp_usp_us_tdata_int = WRITE_RESP;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
m_apb_pwrite_next = 1'b1;
count_next = 8'(COUNT_BYTE_LANES+ADDR_BYTE_LANES-1);
state_next = STATE_HEADER_3;
end else if (xfcp_usp_ds.tdata == ID_REQ) begin
// identify
xfcp_usp_us_tdata_int = ID_RESP;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
state_next = STATE_ID;
end else begin
// invalid start of packet
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b1;
xfcp_usp_us_tuser_int = 1'b1;
if (xfcp_usp_ds.tlast) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end
end else begin
state_next = STATE_HEADER_2;
end
end
STATE_HEADER_3: begin
// store address and length
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
// pass through
xfcp_usp_us_tdata_int = xfcp_usp_ds.tdata;
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
// store pointers
if (count_reg < COUNT_BYTE_LANES) begin
ptr_next[8*(COUNT_BYTE_LANES-count_reg-1) +: 8] = xfcp_usp_ds.tdata;
end else begin
addr_next[8*(ADDR_BYTE_LANES-(count_reg-COUNT_BYTE_LANES)-1) +: 8] = xfcp_usp_ds.tdata;
end
count_next = count_reg - 1;
if (count_reg == 0) begin
// end of header
// set initial word offset
count_next = addr_reg & WORD_AM;
m_apb_pstrb_next = '0;
m_apb_psel_next = 1'b1;
data_next = '0;
if (m_apb_pwrite_reg) begin
// start writing
if (xfcp_usp_ds.tlast) begin
// end of frame in header
xfcp_usp_us_tlast_int = 1'b1;
xfcp_usp_us_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else begin
xfcp_usp_us_tlast_int = 1'b1;
state_next = STATE_WRITE_1;
end
end else begin
// start reading
xfcp_usp_ds_tready_next = !(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast));
state_next = STATE_READ_1;
end
end else begin
if (xfcp_usp_ds.tlast) begin
// end of frame in header
xfcp_usp_us_tlast_int = 1'b1;
xfcp_usp_us_tuser_int = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_HEADER_3;
end
end
end else begin
state_next = STATE_HEADER_3;
end
end
STATE_READ_1: begin
// wait for data
m_apb_psel_next = 1'b1;
m_apb_penable_next = 1'b1;
// drop padding
xfcp_usp_ds_tready_next = !(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast));
if (m_apb.psel && m_apb.penable && m_apb.pready) begin
// read cycle complete, store result
m_apb_penable_next = 1'b0;
data_next = m_apb.prdata;
addr_next = addr_reg + (1 << (ADDR_W-VALID_ADDR_W+BYTE_AW));
state_next = STATE_READ_2;
end else begin
state_next = STATE_READ_1;
end
end
STATE_READ_2: begin
// send data
m_apb_psel_next = 1'b1;
m_apb_penable_next = 1'b0;
// drop padding
xfcp_usp_ds_tready_next = !(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast));
if (xfcp_usp_us_tready_int_reg) begin
// transfer word and update pointers
xfcp_usp_us_tdata_int = data_reg[8*count_reg +: 8];
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
count_next = count_reg + 1;
ptr_next = ptr_reg - 1;
if (ptr_reg == 1) begin
// last word of read
xfcp_usp_us_tlast_int = 1'b1;
m_apb_psel_next = 1'b0;
if (!(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast))) begin
state_next = STATE_WAIT_LAST;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end
end else if (count_reg == (STRB_W*BYTE_W/8)-1) begin
// end of stored data word; read the next one
count_next = 0;
state_next = STATE_READ_1;
end else begin
state_next = STATE_READ_2;
end
end else begin
state_next = STATE_READ_2;
end
end
STATE_WRITE_1: begin
// write data
xfcp_usp_ds_tready_next = 1'b1;
m_apb_psel_next = 1'b1;
m_apb_penable_next = 1'b0;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
// store word
data_next[8*count_reg +: 8] = xfcp_usp_ds.tdata;
count_next = count_reg + 1;
ptr_next = ptr_reg - 1;
m_apb_pstrb_next[count_reg >> ((BYTE_W/8)-1)] = 1'b1;
if (count_reg == (STRB_W*BYTE_W/8)-1 || ptr_reg == 1) begin
// have full word or at end of block, start write operation
count_next = 0;
xfcp_usp_ds_tready_next = 1'b0;
m_apb_penable_next = 1'b1;
state_next = STATE_WRITE_2;
if (xfcp_usp_ds.tlast) begin
// last asserted, nothing further to write
ptr_next = 0;
end
end else if (xfcp_usp_ds.tlast) begin
// last asserted, return to idle
m_apb_psel_next = 1'b0;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WRITE_1;
end
end else begin
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_2: begin
// wait for write completion
m_apb_psel_next = 1'b1;
m_apb_penable_next = 1'b1;
if (m_apb.psel && m_apb.penable && m_apb.pready) begin
// end of write operation
data_next = '0;
addr_next = addr_reg + (1 << (ADDR_W-VALID_ADDR_W+BYTE_AW));
m_apb_penable_next = 1'b0;
m_apb_pstrb_next = '0;
if (ptr_reg == 0) begin
// done writing
if (!last_cycle_reg) begin
xfcp_usp_ds_tready_next = 1'b1;
state_next = STATE_WAIT_LAST;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
m_apb_psel_next = 1'b0;
state_next = STATE_IDLE;
end
end else begin
// more to write
state_next = STATE_WRITE_1;
end
end else begin
state_next = STATE_WRITE_2;
end
end
STATE_ID: begin
// send ID
// drop padding
xfcp_usp_ds_tready_next = !(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast));
xfcp_usp_us_tdata_int = id_rom[id_ptr_reg];
xfcp_usp_us_tvalid_int = 1'b1;
xfcp_usp_us_tlast_int = 1'b0;
xfcp_usp_us_tuser_int = 1'b0;
if (xfcp_usp_us_tready_int_reg) begin
// increment pointer
id_ptr_next = id_ptr_reg + 1;
if (id_ptr_reg == ID_PTR_W'(ID_ROM_SIZE-1)) begin
// read out whole ID
xfcp_usp_us_tlast_int = 1'b1;
if (!(last_cycle_reg || (xfcp_usp_ds.tvalid && xfcp_usp_ds.tlast))) begin
state_next = STATE_WAIT_LAST;
end else begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_ID;
end
end else begin
state_next = STATE_ID;
end
end
STATE_WAIT_LAST: begin
// wait for end of frame
xfcp_usp_ds_tready_next = 1'b1;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
// wait for tlast
if (xfcp_usp_ds.tlast) begin
xfcp_usp_ds_tready_next = xfcp_usp_us_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_LAST;
end
end else begin
state_next = STATE_WAIT_LAST;
end
end
default: begin
// return to idle
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_ptr_reg <= id_ptr_next;
ptr_reg <= ptr_next;
count_reg <= count_next;
if (xfcp_usp_ds.tready && xfcp_usp_ds.tvalid) begin
last_cycle_reg <= xfcp_usp_ds.tlast;
end
addr_reg <= addr_next;
data_reg <= data_next;
xfcp_usp_ds_tready_reg <= xfcp_usp_ds_tready_next;
m_apb_psel_reg <= m_apb_psel_next;
m_apb_penable_reg <= m_apb_penable_next;
m_apb_pwrite_reg <= m_apb_pwrite_next;
m_apb_pstrb_reg <= m_apb_pstrb_next;
if (rst) begin
state_reg <= STATE_IDLE;
xfcp_usp_ds_tready_reg <= 1'b0;
m_apb_psel_reg <= 1'b0;
m_apb_penable_reg <= 1'b0;
end
end
// output datapath logic
logic [7:0] xfcp_usp_us_tdata_reg = '0;
logic xfcp_usp_us_tvalid_reg = 1'b0, xfcp_usp_us_tvalid_next;
logic xfcp_usp_us_tlast_reg = 1'b0;
logic xfcp_usp_us_tuser_reg = 1'b0;
logic [7:0] temp_xfcp_usp_us_tdata_reg = '0;
logic temp_xfcp_usp_us_tvalid_reg = 1'b0, temp_xfcp_usp_us_tvalid_next;
logic temp_xfcp_usp_us_tlast_reg = 1'b0;
logic temp_xfcp_usp_us_tuser_reg = 1'b0;
// datapath control
reg store_xfcp_usp_us_int_to_output;
reg store_xfcp_usp_us_int_to_temp;
reg store_xfcp_usp_us_temp_to_output;
assign xfcp_usp_us.tdata = xfcp_usp_us_tdata_reg;
assign xfcp_usp_us.tkeep = '1;
assign xfcp_usp_us.tstrb = xfcp_usp_us.tkeep;
assign xfcp_usp_us.tvalid = xfcp_usp_us_tvalid_reg;
assign xfcp_usp_us.tlast = xfcp_usp_us_tlast_reg;
assign xfcp_usp_us.tid = '0;
assign xfcp_usp_us.tdest = '0;
assign xfcp_usp_us.tuser = xfcp_usp_us_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign xfcp_usp_us_tready_int_early = xfcp_usp_us.tready || (!temp_xfcp_usp_us_tvalid_reg && (!xfcp_usp_us_tvalid_reg || !xfcp_usp_us_tvalid_int));
always_comb begin
// transfer sink ready state to source
xfcp_usp_us_tvalid_next = xfcp_usp_us_tvalid_reg;
temp_xfcp_usp_us_tvalid_next = temp_xfcp_usp_us_tvalid_reg;
store_xfcp_usp_us_int_to_output = 1'b0;
store_xfcp_usp_us_int_to_temp = 1'b0;
store_xfcp_usp_us_temp_to_output = 1'b0;
if (xfcp_usp_us_tready_int_reg) begin
// input is ready
if (xfcp_usp_us.tready || !xfcp_usp_us_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
xfcp_usp_us_tvalid_next = xfcp_usp_us_tvalid_int;
store_xfcp_usp_us_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_xfcp_usp_us_tvalid_next = xfcp_usp_us_tvalid_int;
store_xfcp_usp_us_int_to_temp = 1'b1;
end
end else if (xfcp_usp_us.tready) begin
// input is not ready, but output is ready
xfcp_usp_us_tvalid_next = temp_xfcp_usp_us_tvalid_reg;
temp_xfcp_usp_us_tvalid_next = 1'b0;
store_xfcp_usp_us_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
xfcp_usp_us_tvalid_reg <= xfcp_usp_us_tvalid_next;
xfcp_usp_us_tready_int_reg <= xfcp_usp_us_tready_int_early;
temp_xfcp_usp_us_tvalid_reg <= temp_xfcp_usp_us_tvalid_next;
// datapath
if (store_xfcp_usp_us_int_to_output) begin
xfcp_usp_us_tdata_reg <= xfcp_usp_us_tdata_int;
xfcp_usp_us_tlast_reg <= xfcp_usp_us_tlast_int;
xfcp_usp_us_tuser_reg <= xfcp_usp_us_tuser_int;
end else if (store_xfcp_usp_us_temp_to_output) begin
xfcp_usp_us_tdata_reg <= temp_xfcp_usp_us_tdata_reg;
xfcp_usp_us_tlast_reg <= temp_xfcp_usp_us_tlast_reg;
xfcp_usp_us_tuser_reg <= temp_xfcp_usp_us_tuser_reg;
end
if (store_xfcp_usp_us_int_to_temp) begin
temp_xfcp_usp_us_tdata_reg <= xfcp_usp_us_tdata_int;
temp_xfcp_usp_us_tlast_reg <= xfcp_usp_us_tlast_int;
temp_xfcp_usp_us_tuser_reg <= xfcp_usp_us_tuser_int;
end
if (rst) begin
xfcp_usp_us_tvalid_reg <= 1'b0;
xfcp_usp_us_tready_int_reg <= 1'b0;
temp_xfcp_usp_us_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,55 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
RTL_DIR = ../../rtl
LIB_DIR = ../../lib
TAXI_SRC_DIR = $(LIB_DIR)/taxi/src
DUT = taxi_xfcp_mod_apb
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += $(RTL_DIR)/$(DUT).sv
VERILOG_SOURCES += $(TAXI_SRC_DIR)/apb/rtl/taxi_apb_if.sv
VERILOG_SOURCES += $(TAXI_SRC_DIR)/axis/rtl/taxi_axis_if.sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_COUNT_SIZE := 16
export PARAM_APB_DATA_W := 32
export PARAM_APB_ADDR_W := 32
export PARAM_APB_STRB_W := $(shell expr $(PARAM_APB_DATA_W) / 8 )
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,258 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import struct
import sys
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamSource, AxiStreamSink
from cocotbext.axi import ApbBus, ApbRam
try:
from xfcp import XfcpFrame
except ImportError:
# attempt import from current directory
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))
try:
from xfcp import XfcpFrame
finally:
del sys.path[0]
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 8, units="ns").start())
self.usp_source = AxiStreamSource(AxiStreamBus.from_entity(dut.xfcp_usp_ds), dut.clk, dut.rst)
self.usp_sink = AxiStreamSink(AxiStreamBus.from_entity(dut.xfcp_usp_us), dut.clk, dut.rst)
self.apb_ram = ApbRam(ApbBus.from_entity(dut.m_apb), dut.clk, dut.rst, size=2**16)
def set_idle_generator(self, generator=None):
if generator:
self.usp_source.set_pause_generator(generator())
self.apb_ram.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.usp_sink.set_pause_generator(generator())
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def run_test_write(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.apb_ram.byte_lanes
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in range(1, byte_lanes*4):
for offset in range(byte_lanes):
tb.log.info("length %d, offset %d", length, offset)
addr = offset+0x1000
test_data = bytearray([x % 256 for x in range(length)])
tb.apb_ram.write(addr-128, b'\xaa'*(length+256))
pkt = XfcpFrame()
pkt.ptype = 0x12
pkt.payload = bytearray(struct.pack('<IH', addr, length)+test_data)
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
for k in range(100):
await RisingEdge(dut.clk)
tb.log.debug("%s", tb.apb_ram.hexdump_str((addr & ~0xf)-16, (((addr & 0xf)+length-1) & ~0xf)+48))
assert tb.apb_ram.read(addr, length) == test_data
assert tb.apb_ram.read(addr-1, 1) == b'\xaa'
assert tb.apb_ram.read(addr+length, 1) == b'\xaa'
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_read(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.apb_ram.byte_lanes
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in range(1, byte_lanes*4):
for offset in range(byte_lanes):
tb.log.info("length %d, offset %d", length, offset)
addr = offset+0x1000
test_data = bytearray([x % 256 for x in range(length)])
tb.apb_ram.write(addr, test_data)
pkt = XfcpFrame()
pkt.ptype = 0x10
pkt.payload = bytearray(struct.pack('<IH', addr, length))
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
assert rx_pkt.payload[6:] == test_data
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_id(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
pkt = XfcpFrame()
pkt.ptype = 0xFE
pkt.payload = b''
tb.log.debug("TX packet: %s", pkt)
await tb.usp_source.send(pkt.build())
rx_frame = await tb.usp_sink.recv()
rx_pkt = XfcpFrame.parse(rx_frame.tdata)
tb.log.debug("RX packet: %s", rx_pkt)
assert len(rx_pkt.payload) == 32
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
if getattr(cocotb, 'top', None) is not None:
for test in [run_test_write, run_test_read, run_test_id]:
factory = TestFactory(test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.dirname(__file__)
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl'))
lib_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'lib'))
taxi_src_dir = os.path.abspath(os.path.join(lib_dir, 'taxi', 'src'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("data_w", [8, 16, 32])
def test_taxi_xfcp_mod_apb(request, data_w):
dut = "taxi_xfcp_mod_apb"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, f"{dut}.sv"),
os.path.join(taxi_src_dir, "apb", "rtl", "taxi_apb_if.sv"),
os.path.join(taxi_src_dir, "axis", "rtl", "taxi_axis_if.sv"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['COUNT_SIZE'] = 16
parameters['APB_DATA_W'] = data_w
parameters['APB_ADDR_W'] = 32
parameters['APB_STRB_W'] = parameters['APB_DATA_W'] // 8
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,61 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* XFCP APB module testbench
*/
module test_taxi_xfcp_mod_apb #
(
/* verilator lint_off WIDTHTRUNC */
parameter COUNT_SIZE = 16,
parameter APB_DATA_W = 32,
parameter APB_ADDR_W = 32,
parameter APB_STRB_W = (APB_DATA_W/8)
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axis_if #(.DATA_W(8), .LAST_EN(1), .USER_EN(1), .USER_W(1)) xfcp_usp_ds(), xfcp_usp_us();
taxi_apb_if #(
.DATA_W(APB_DATA_W),
.ADDR_W(APB_ADDR_W),
.STRB_W(APB_STRB_W)
) m_apb();
taxi_xfcp_mod_apb #(
.COUNT_SIZE(COUNT_SIZE)
)
uut (
.clk(clk),
.rst(rst),
/*
* XFCP upstream port
*/
.xfcp_usp_ds(xfcp_usp_ds),
.xfcp_usp_us(xfcp_usp_us),
/*
* APB master interface
*/
.m_apb(m_apb)
);
endmodule
`resetall

View File

@@ -0,0 +1 @@
../xfcp.py