axi: Add AXI lite width converter module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-08-30 13:02:27 -07:00
parent 4dd84efd6c
commit c22e659259
8 changed files with 1213 additions and 0 deletions

View File

@@ -31,6 +31,7 @@ To facilitate the dual-license model, contributions to the project can only be a
* AXI lite
* SV interface for AXI lite
* Register slice
* Width converter
* Single-port RAM
* Dual-port RAM
* AXI stream

View File

@@ -0,0 +1,4 @@
taxi_axil_adapter.sv
taxi_axil_adapter_wr.sv
taxi_axil_adapter_rd.sv
taxi_axil_if.sv

View File

@@ -0,0 +1,70 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite width adapter
*/
module taxi_axil_adapter
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Lite slave interface
*/
taxi_axil_if.wr_slv s_axil_wr,
taxi_axil_if.rd_slv s_axil_rd,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.wr_mst m_axil_wr,
taxi_axil_if.rd_mst m_axil_rd
);
taxi_axil_adapter_wr
axil_adapter_wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_wr(s_axil_wr),
/*
* AXI4-Lite master interface
*/
.m_axil_wr(m_axil_wr)
);
taxi_axil_adapter_rd
axil_adapter_rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_rd(s_axil_rd),
/*
* AXI4-Lite master interface
*/
.m_axil_rd(m_axil_rd)
);
endmodule
`resetall

View File

@@ -0,0 +1,332 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite width adapter (read)
*/
module taxi_axil_adapter_rd
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Lite slave interface
*/
taxi_axil_if.rd_slv s_axil_rd,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.rd_mst m_axil_rd
);
// extract parameters
localparam S_DATA_W = s_axil_rd.DATA_W;
localparam ADDR_W = s_axil_rd.ADDR_W;
localparam S_STRB_W = s_axil_rd.STRB_W;
localparam logic ARUSER_EN = s_axil_rd.ARUSER_EN && m_axil_rd.ARUSER_EN;
localparam ARUSER_W = s_axil_rd.ARUSER_W;
localparam logic RUSER_EN = s_axil_rd.RUSER_EN && m_axil_rd.RUSER_EN;
localparam RUSER_W = s_axil_rd.RUSER_W;
localparam M_DATA_W = m_axil_rd.DATA_W;
localparam M_STRB_W = m_axil_rd.STRB_W;
localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W);
localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W);
localparam S_BYTE_LANES = S_STRB_W;
localparam M_BYTE_LANES = M_STRB_W;
localparam S_BYTE_W = S_DATA_W/S_BYTE_LANES;
localparam M_BYTE_W = M_DATA_W/M_BYTE_LANES;
localparam S_ADDR_MASK = {ADDR_W{1'b1}} << S_ADDR_BIT_OFFSET;
localparam M_ADDR_MASK = {ADDR_W{1'b1}} << M_ADDR_BIT_OFFSET;
// check configuration
if (S_BYTE_W * S_STRB_W != S_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (M_BYTE_W * M_STRB_W != M_DATA_W)
$fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)");
if (S_BYTE_W != M_BYTE_W)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES)
$fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)");
if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass
// same width; bypass
assign m_axil_rd.araddr = s_axil_rd.araddr;
assign m_axil_rd.arprot = s_axil_rd.arprot;
assign m_axil_rd.aruser = ARUSER_EN ? s_axil_rd.aruser : '0;
assign m_axil_rd.arvalid = s_axil_rd.arvalid;
assign s_axil_rd.arready = m_axil_rd.arready;
assign s_axil_rd.rdata = m_axil_rd.rdata;
assign s_axil_rd.rresp = m_axil_rd.rresp;
assign s_axil_rd.ruser = RUSER_EN ? m_axil_rd.ruser : '0;
assign s_axil_rd.rvalid = m_axil_rd.rvalid;
assign m_axil_rd.rready = s_axil_rd.rready;
end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize
// output is wider; upsize
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic s_axil_arready_reg = 1'b0, s_axil_arready_next;
logic [S_DATA_W-1:0] s_axil_rdata_reg = '0, s_axil_rdata_next;
logic [1:0] s_axil_rresp_reg = '0, s_axil_rresp_next;
logic [RUSER_W-1:0] s_axil_ruser_reg = '0, s_axil_ruser_next;
logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = '0, m_axil_arprot_next;
logic [ARUSER_W-1:0] m_axil_aruser_reg = '0, m_axil_aruser_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axil_rd.arready = s_axil_arready_reg;
assign s_axil_rd.rdata = s_axil_rdata_reg;
assign s_axil_rd.rresp = s_axil_rresp_reg;
assign s_axil_rd.ruser = RUSER_EN ? s_axil_ruser_reg : '0;
assign s_axil_rd.rvalid = s_axil_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.aruser = ARUSER_EN ? m_axil_aruser_reg : '0;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
s_axil_arready_next = 1'b0;
s_axil_rdata_next = s_axil_rdata_reg;
s_axil_rresp_next = s_axil_rresp_reg;
s_axil_ruser_next = s_axil_ruser_reg;
s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_aruser_next = m_axil_aruser_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
s_axil_arready_next = !m_axil_rd.arvalid;
if (s_axil_rd.arready && s_axil_rd.arvalid) begin
s_axil_arready_next = 1'b0;
m_axil_araddr_next = s_axil_rd.araddr;
m_axil_arprot_next = s_axil_rd.arprot;
m_axil_aruser_next = s_axil_rd.aruser;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = !m_axil_rd.rvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axil_rd.rvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
m_axil_rready_next = 1'b0;
s_axil_rdata_next = m_axil_rd.rdata[m_axil_araddr_reg[M_ADDR_BIT_OFFSET - 1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W];
s_axil_rresp_next = m_axil_rd.rresp;
s_axil_ruser_next = m_axil_rd.ruser;
s_axil_rvalid_next = 1'b1;
s_axil_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rdata_reg <= s_axil_rdata_next;
s_axil_rresp_reg <= s_axil_rresp_next;
s_axil_ruser_reg <= s_axil_ruser_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_aruser_reg <= m_axil_aruser_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_arready_reg <= 1'b0;
s_axil_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam DATA_W = S_DATA_W;
localparam STRB_W = S_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = S_BYTE_LANES / M_BYTE_LANES;
localparam SEG_COUNT_W = $clog2(SEG_COUNT);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic [SEG_COUNT_W-1:0] current_seg_reg = '0, current_seg_next;
logic s_axil_arready_reg = 1'b0, s_axil_arready_next;
logic [S_DATA_W-1:0] s_axil_rdata_reg = '0, s_axil_rdata_next;
logic [1:0] s_axil_rresp_reg = '0, s_axil_rresp_next;
logic [RUSER_W-1:0] s_axil_ruser_reg = '0, s_axil_ruser_next;
logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next;
logic [ADDR_W-1:0] m_axil_araddr_reg = '0, m_axil_araddr_next;
logic [2:0] m_axil_arprot_reg = '0, m_axil_arprot_next;
logic [ARUSER_W-1:0] m_axil_aruser_reg = '0, m_axil_aruser_next;
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
logic m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axil_rd.arready = s_axil_arready_reg;
assign s_axil_rd.rdata = s_axil_rdata_reg;
assign s_axil_rd.rresp = s_axil_rresp_reg;
assign s_axil_rd.ruser = RUSER_EN ? s_axil_ruser_reg : '0;
assign s_axil_rd.rvalid = s_axil_rvalid_reg;
assign m_axil_rd.araddr = m_axil_araddr_reg;
assign m_axil_rd.arprot = m_axil_arprot_reg;
assign m_axil_rd.aruser = ARUSER_EN ? m_axil_aruser_reg : '0;
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
assign m_axil_rd.rready = m_axil_rready_reg;
always_comb begin
state_next = STATE_IDLE;
current_seg_next = current_seg_reg;
s_axil_arready_next = 1'b0;
s_axil_rdata_next = s_axil_rdata_reg;
s_axil_rresp_next = s_axil_rresp_reg;
s_axil_ruser_next = s_axil_ruser_reg;
s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rd.rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_aruser_next = m_axil_aruser_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_rd.arready;
m_axil_rready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
s_axil_arready_next = !m_axil_rd.arvalid;
current_seg_next = s_axil_rd.araddr[M_ADDR_BIT_OFFSET +: SEG_COUNT_W];
s_axil_rresp_next = 2'd0;
if (s_axil_rd.arready && s_axil_rd.arvalid) begin
s_axil_arready_next = 1'b0;
m_axil_araddr_next = s_axil_rd.araddr;
m_axil_arprot_next = s_axil_rd.arprot;
m_axil_aruser_next = s_axil_rd.aruser;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = !m_axil_rd.rvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axil_rd.rvalid;
if (m_axil_rd.rready && m_axil_rd.rvalid) begin
m_axil_rready_next = 1'b0;
m_axil_araddr_next = (m_axil_araddr_reg & M_ADDR_MASK) + SEG_STRB_W;
s_axil_rdata_next[current_seg_reg*SEG_DATA_W +: SEG_DATA_W] = m_axil_rd.rdata;
s_axil_ruser_next = m_axil_rd.ruser;
current_seg_next = current_seg_reg + 1;
if (m_axil.rresp != 0) begin
s_axil_rresp_next = m_axil_rd.rresp;
end
if (current_seg_reg == SEG_COUNT_W'(SEG_COUNT-1)) begin
s_axil_rvalid_next = 1'b1;
s_axil_arready_next = !m_axil_rd.arvalid;
state_next = STATE_IDLE;
end else begin
m_axil_arvalid_next = 1'b1;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
current_seg_reg <= current_seg_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rdata_reg <= s_axil_rdata_next;
s_axil_rresp_reg <= s_axil_rresp_next;
s_axil_ruser_reg <= s_axil_ruser_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
m_axil_aruser_reg <= m_axil_aruser_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_arready_reg <= 1'b0;
s_axil_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end
end
end
endmodule
`resetall

View File

@@ -0,0 +1,401 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite width adapter (write)
*/
module taxi_axil_adapter_wr
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Lite slave interface
*/
taxi_axil_if.wr_slv s_axil_wr,
/*
* AXI4-Lite master interface
*/
taxi_axil_if.wr_mst m_axil_wr
);
// extract parameters
localparam S_DATA_W = s_axil_wr.DATA_W;
localparam ADDR_W = s_axil_wr.ADDR_W;
localparam S_STRB_W = s_axil_wr.STRB_W;
localparam logic AWUSER_EN = s_axil_wr.AWUSER_EN && m_axil_wr.AWUSER_EN;
localparam AWUSER_W = s_axil_wr.AWUSER_W;
localparam logic WUSER_EN = s_axil_wr.WUSER_EN && m_axil_wr.WUSER_EN;
localparam WUSER_W = s_axil_wr.WUSER_W;
localparam logic BUSER_EN = s_axil_wr.BUSER_EN && m_axil_wr.BUSER_EN;
localparam BUSER_W = s_axil_wr.BUSER_W;
localparam M_DATA_W = m_axil_wr.DATA_W;
localparam M_STRB_W = m_axil_wr.STRB_W;
localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W);
localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W);
localparam S_BYTE_LANES = S_STRB_W;
localparam M_BYTE_LANES = M_STRB_W;
localparam S_BYTE_W = S_DATA_W/S_BYTE_LANES;
localparam M_BYTE_W = M_DATA_W/M_BYTE_LANES;
localparam S_ADDR_MASK = {ADDR_W{1'b1}} << S_ADDR_BIT_OFFSET;
localparam M_ADDR_MASK = {ADDR_W{1'b1}} << M_ADDR_BIT_OFFSET;
// check configuration
if (S_BYTE_W * S_STRB_W != S_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (M_BYTE_W * M_STRB_W != M_DATA_W)
$fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)");
if (S_BYTE_W != M_BYTE_W)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES)
$fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)");
if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass
// same width; bypass
assign m_axil_wr.awaddr = s_axil_wr.awaddr;
assign m_axil_wr.awprot = s_axil_wr.awprot;
assign m_axil_wr.awuser = AWUSER_EN ? s_axil_wr.awuser : '0;
assign m_axil_wr.awvalid = s_axil_wr.awvalid;
assign s_axil_wr.awready = m_axil_wr.awready;
assign m_axil_wr.wdata = s_axil_wr.wdata;
assign m_axil_wr.wstrb = s_axil_wr.wstrb;
assign m_axil_wr.wuser = WUSER_EN ? s_axil_wr.wuser : '0;
assign m_axil_wr.wvalid = s_axil_wr.wvalid;
assign s_axil_wr.wready = m_axil_wr.wready;
assign s_axil_wr.bresp = m_axil_wr.bresp;
assign s_axil_wr.buser = BUSER_EN ? m_axil_wr.buser : '0;
assign s_axil_wr.bvalid = m_axil_wr.bvalid;
assign m_axil_wr.bready = s_axil_wr.bready;
end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize
// output is wider; upsize
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic s_axil_awready_reg = 1'b0, s_axil_awready_next;
logic s_axil_wready_reg = 1'b0, s_axil_wready_next;
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next;
logic [2:0] m_axil_awprot_reg = '0, m_axil_awprot_next;
logic [AWUSER_W-1:0] m_axil_awuser_reg = '0, m_axil_awuser_next;
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
logic [M_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next;
logic [M_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next;
logic [WUSER_W-1:0] m_axil_wuser_reg = '0, m_axil_wuser_next;
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
assign s_axil_wr.awready = s_axil_awready_reg;
assign s_axil_wr.wready = s_axil_wready_reg;
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
assign m_axil_wr.awprot = m_axil_awprot_reg;
assign m_axil_wr.awuser = AWUSER_EN ? m_axil_awuser_reg : '0;
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
assign m_axil_wr.wdata = m_axil_wdata_reg;
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
assign m_axil_wr.wuser = WUSER_EN ? m_axil_wuser_reg : '0;
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
// B channel passthrough
assign s_axil_wr.bresp = m_axil_wr.bresp;
assign s_axil_wr.buser = BUSER_EN ? m_axil_wr.buser : '0;
assign s_axil_wr.bvalid = m_axil_wr.bvalid;
assign m_axil_wr.bready = s_axil_wr.bready;
always_comb begin
state_next = STATE_IDLE;
s_axil_awready_next = 1'b0;
s_axil_wready_next = 1'b0;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awuser_next = m_axil_awuser_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wuser_next = m_axil_wuser_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready;
case (state_reg)
STATE_IDLE: begin
s_axil_awready_next = !m_axil_wr.awvalid;
if (s_axil_wr.awready && s_axil_wr.awvalid) begin
s_axil_awready_next = 1'b0;
m_axil_awaddr_next = s_axil_wr.awaddr;
m_axil_awprot_next = s_axil_wr.awprot;
m_axil_awuser_next = s_axil_wr.awuser;
m_axil_awvalid_next = 1'b1;
s_axil_wready_next = !m_axil_wr.wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axil_wready_next = !m_axil_wr.wvalid;
if (s_axil_wr.wready && s_axil_wr.wvalid) begin
s_axil_wready_next = 1'b0;
m_axil_wdata_next = {(M_BYTE_LANES/S_BYTE_LANES){s_axil_wr.wdata}};
m_axil_wstrb_next = '0;
m_axil_wstrb_next[m_axil_awaddr_reg[M_ADDR_BIT_OFFSET - 1:S_ADDR_BIT_OFFSET] * S_STRB_W +: S_STRB_W] = s_axil_wr.wstrb;
m_axil_wuser_next = s_axil_wr.wuser;
m_axil_wvalid_next = 1'b1;
s_axil_awready_next = !m_axil_wr.awvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end
default: begin
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_awuser_reg <= m_axil_awuser_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wuser_reg <= m_axil_wuser_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_awready_reg <= 1'b0;
s_axil_wready_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam DATA_W = S_DATA_W;
localparam STRB_W = S_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = S_BYTE_LANES / M_BYTE_LANES;
localparam SEG_COUNT_W = $clog2(SEG_COUNT);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_RESP = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [STRB_W-1:0] strb_reg = '0, strb_next;
logic [SEG_COUNT_W-1:0] current_seg_reg = 0, current_seg_next;
logic s_axil_awready_reg = 1'b0, s_axil_awready_next;
logic s_axil_wready_reg = 1'b0, s_axil_wready_next;
logic [1:0] s_axil_bresp_reg = '0, s_axil_bresp_next;
logic [BUSER_W-1:0] s_axil_buser_reg = '0, s_axil_buser_next;
logic s_axil_bvalid_reg = 1'b0, s_axil_bvalid_next;
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0, m_axil_awaddr_next;
logic [2:0] m_axil_awprot_reg = '0, m_axil_awprot_next;
logic [AWUSER_W-1:0] m_axil_awuser_reg = '0, m_axil_awuser_next;
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
logic [M_DATA_W-1:0] m_axil_wdata_reg = '0, m_axil_wdata_next;
logic [M_STRB_W-1:0] m_axil_wstrb_reg = '0, m_axil_wstrb_next;
logic [WUSER_W-1:0] m_axil_wuser_reg = '0, m_axil_wuser_next;
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
logic m_axil_bready_reg = 1'b0, m_axil_bready_next;
assign s_axil_wr.awready = s_axil_awready_reg;
assign s_axil_wr.wready = s_axil_wready_reg;
assign s_axil_wr.bresp = s_axil_bresp_reg;
assign s_axil_wr.buser = BUSER_EN ? s_axil_buser_reg : '0;
assign s_axil_wr.bvalid = s_axil_bvalid_reg;
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
assign m_axil_wr.awprot = m_axil_awprot_reg;
assign m_axil_wr.awuser = AWUSER_EN ? m_axil_awuser_reg : '0;
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
assign m_axil_wr.wdata = m_axil_wdata_reg;
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
assign m_axil_wr.wuser = WUSER_EN ? m_axil_wuser_reg : '0;
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
assign m_axil_wr.bready = m_axil_bready_reg;
always_comb begin
state_next = STATE_IDLE;
data_next = data_reg;
strb_next = strb_reg;
current_seg_next = current_seg_reg;
s_axil_awready_next = 1'b0;
s_axil_wready_next = 1'b0;
s_axil_bresp_next = s_axil_bresp_reg;
s_axil_buser_next = s_axil_buser_reg;
s_axil_bvalid_next = s_axil_bvalid_reg && !s_axil_wr.bready;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awuser_next = m_axil_awuser_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_wr.awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wuser_next = m_axil_wuser_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wr.wready;
m_axil_bready_next = 1'b0;
// master output is narrower; may need several cycles
case (state_reg)
STATE_IDLE: begin
s_axil_awready_next = !m_axil_wr.awvalid;
current_seg_next = s_axil_wr.awaddr[M_ADDR_BIT_OFFSET +: SEG_COUNT_W];
s_axil_bresp_next = 2'd0;
if (s_axil_wr.awready && s_axil_wr.awvalid) begin
s_axil_awready_next = 1'b0;
m_axil_awaddr_next = s_axil_wr.awaddr;
m_axil_awprot_next = s_axil_wr.awprot;
m_axil_awuser_next = s_axil_wr.awuser;
m_axil_awvalid_next = 1'b1;
s_axil_wready_next = !m_axil_wr.wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axil_wready_next = !m_axil_wr.wvalid;
if (s_axil_wr.wready && s_axil_wr.wvalid) begin
s_axil_wready_next = 1'b0;
data_next = s_axil_wr.wdata;
strb_next = s_axil_wr.wstrb;
m_axil_wdata_next = data_next[current_seg_reg*SEG_DATA_W +: SEG_DATA_W];
m_axil_wstrb_next = strb_next[current_seg_reg*SEG_STRB_W +: SEG_STRB_W];
m_axil_wuser_next = s_axil_wr.wuser;
m_axil_wvalid_next = 1'b1;
m_axil_bready_next = !s_axil_wr.bvalid;
current_seg_next = current_seg_reg + 1;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
m_axil_bready_next = !s_axil_wr.bvalid;
if (m_axil_wr.bready && m_axil_wr.bvalid) begin
m_axil_bready_next = 1'b0;
m_axil_awaddr_next = (m_axil_awaddr_reg & M_ADDR_MASK) + SEG_STRB_W;
m_axil_wdata_next = data_next[current_seg_reg*SEG_DATA_W +: SEG_DATA_W];
m_axil_wstrb_next = strb_next[current_seg_reg*SEG_STRB_W +: SEG_STRB_W];
s_axil_buser_next = m_axil_wr.buser;
current_seg_next = current_seg_reg + 1;
if (m_axil.bresp != 0) begin
s_axil_bresp_next = m_axil_wr.bresp;
end
if (current_seg_reg == 0) begin
s_axil_bvalid_next = 1'b1;
s_axil_awready_next = !m_axil_wr.awvalid;
state_next = STATE_IDLE;
end else begin
m_axil_awvalid_next = 1'b1;
m_axil_wvalid_next = 1'b1;
state_next = STATE_RESP;
end
end else begin
state_next = STATE_RESP;
end
end
default: begin
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
data_reg <= data_next;
strb_reg <= strb_next;
current_seg_reg <= current_seg_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
s_axil_bresp_reg <= s_axil_bresp_next;
s_axil_buser_reg <= s_axil_buser_next;
s_axil_bvalid_reg <= s_axil_bvalid_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_awuser_reg <= m_axil_awuser_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wuser_reg <= m_axil_wuser_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_awready_reg <= 1'b0;
s_axil_wready_reg <= 1'b0;
s_axil_bvalid_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
end
end
end
endmodule
`resetall

View File

@@ -0,0 +1,64 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2020-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
RTL_DIR = ../../rtl
LIB_DIR = ../../lib
TAXI_SRC_DIR = $(LIB_DIR)/taxi/src
DUT = taxi_axil_adapter
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += $(RTL_DIR)/$(DUT).f
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_ADDR_W := 32
export PARAM_S_DATA_W := 32
export PARAM_S_STRB_W := $(shell expr $(PARAM_S_DATA_W) / 8 )
export PARAM_M_DATA_W := 32
export PARAM_M_STRB_W := $(shell expr $(PARAM_M_DATA_W) / 8 )
export PARAM_AWUSER_EN := 0
export PARAM_AWUSER_W := 1
export PARAM_WUSER_EN := 0
export PARAM_WUSER_W := 1
export PARAM_BUSER_EN := 0
export PARAM_BUSER_W := 1
export PARAM_ARUSER_EN := 0
export PARAM_ARUSER_W := 1
export PARAM_RUSER_EN := 0
export PARAM_RUSER_W := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,246 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2020-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Timer
from cocotb.regression import TestFactory
from cocotbext.axi import AxiLiteBus, AxiLiteMaster, AxiLiteRam
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 10, units="ns").start())
self.axil_master = AxiLiteMaster(AxiLiteBus.from_entity(dut.s_axil), dut.clk, dut.rst)
self.axil_ram = AxiLiteRam(AxiLiteBus.from_entity(dut.m_axil), dut.clk, dut.rst, size=2**16)
def set_idle_generator(self, generator=None):
if generator:
self.axil_master.write_if.aw_channel.set_pause_generator(generator())
self.axil_master.write_if.w_channel.set_pause_generator(generator())
self.axil_master.read_if.ar_channel.set_pause_generator(generator())
self.axil_ram.write_if.b_channel.set_pause_generator(generator())
self.axil_ram.read_if.r_channel.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.axil_master.write_if.b_channel.set_pause_generator(generator())
self.axil_master.read_if.r_channel.set_pause_generator(generator())
self.axil_ram.write_if.aw_channel.set_pause_generator(generator())
self.axil_ram.write_if.w_channel.set_pause_generator(generator())
self.axil_ram.read_if.ar_channel.set_pause_generator(generator())
async def cycle_reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def run_test_write(dut, data_in=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.axil_master.write_if.byte_lanes
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in range(1, byte_lanes*2):
for offset in range(byte_lanes):
tb.log.info("length %d, offset %d", length, offset)
addr = offset+0x1000
test_data = bytearray([x % 256 for x in range(length)])
tb.axil_ram.write(addr-128, b'\xaa'*(length+256))
await tb.axil_master.write(addr, test_data)
tb.log.debug("%s", tb.axil_ram.hexdump_str((addr & ~0xf)-16, (((addr & 0xf)+length-1) & ~0xf)+48))
assert tb.axil_ram.read(addr, length) == test_data
assert tb.axil_ram.read(addr-1, 1) == b'\xaa'
assert tb.axil_ram.read(addr+length, 1) == b'\xaa'
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_read(dut, data_in=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.axil_master.write_if.byte_lanes
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in range(1, byte_lanes*2):
for offset in range(byte_lanes):
tb.log.info("length %d, offset %d", length, offset)
addr = offset+0x1000
test_data = bytearray([x % 256 for x in range(length)])
tb.axil_ram.write(addr, test_data)
data = await tb.axil_master.read(addr, length)
assert data.data == test_data
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
async def worker(master, offset, aperture, count=16):
for k in range(count):
length = random.randint(1, min(32, aperture))
addr = offset+random.randint(0, aperture-length)
test_data = bytearray([x % 256 for x in range(length)])
await Timer(random.randint(1, 100), 'ns')
await master.write(addr, test_data)
await Timer(random.randint(1, 100), 'ns')
data = await master.read(addr, length)
assert data.data == test_data
workers = []
for k in range(16):
workers.append(cocotb.start_soon(worker(tb.axil_master, k*0x1000, 0x1000, count=16)))
while workers:
await workers.pop(0).join()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
if cocotb.SIM_NAME:
for test in [run_test_write, run_test_read]:
factory = TestFactory(test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.generate_tests()
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl'))
lib_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'lib'))
taxi_src_dir = os.path.abspath(os.path.join(lib_dir, 'taxi', 'src'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("m_data_w", [8, 16, 32])
@pytest.mark.parametrize("s_data_w", [8, 16, 32])
def test_taxi_axil_adapter(request, s_data_w, m_data_w):
dut = "taxi_axil_adapter"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, f"{dut}.f"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['ADDR_W'] = 32
parameters['S_DATA_W'] = s_data_w
parameters['S_STRB_W'] = parameters['S_DATA_W'] // 8
parameters['M_DATA_W'] = m_data_w
parameters['M_STRB_W'] = parameters['M_DATA_W'] // 8
parameters['AWUSER_EN'] = 0
parameters['AWUSER_W'] = 1
parameters['WUSER_EN'] = 0
parameters['WUSER_W'] = 1
parameters['BUSER_EN'] = 0
parameters['BUSER_W'] = 1
parameters['ARUSER_EN'] = 0
parameters['ARUSER_W'] = 1
parameters['RUSER_EN'] = 0
parameters['RUSER_W'] = 1
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,95 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Lite width adapter testbench
*/
module test_taxi_axil_adapter #
(
/* verilator lint_off WIDTHTRUNC */
parameter ADDR_W = 32,
parameter S_DATA_W = 32,
parameter S_STRB_W = (S_DATA_W/8),
parameter M_DATA_W = 32,
parameter M_STRB_W = (M_DATA_W/8),
parameter logic AWUSER_EN = 1'b0,
parameter AWUSER_W = 1,
parameter logic WUSER_EN = 1'b0,
parameter WUSER_W = 1,
parameter logic BUSER_EN = 1'b0,
parameter BUSER_W = 1,
parameter logic ARUSER_EN = 1'b0,
parameter ARUSER_W = 1,
parameter logic RUSER_EN = 1'b0,
parameter RUSER_W = 1
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axil_if #(
.DATA_W(S_DATA_W),
.ADDR_W(ADDR_W),
.STRB_W(S_STRB_W),
.AWUSER_EN(AWUSER_EN),
.AWUSER_W(AWUSER_W),
.WUSER_EN(WUSER_EN),
.WUSER_W(WUSER_W),
.BUSER_EN(BUSER_EN),
.BUSER_W(BUSER_W),
.ARUSER_EN(ARUSER_EN),
.ARUSER_W(ARUSER_W),
.RUSER_EN(RUSER_EN),
.RUSER_W(RUSER_W)
) s_axil();
taxi_axil_if #(
.DATA_W(M_DATA_W),
.ADDR_W(ADDR_W),
.STRB_W(M_STRB_W),
.AWUSER_EN(AWUSER_EN),
.AWUSER_W(AWUSER_W),
.WUSER_EN(WUSER_EN),
.WUSER_W(WUSER_W),
.BUSER_EN(BUSER_EN),
.BUSER_W(BUSER_W),
.ARUSER_EN(ARUSER_EN),
.ARUSER_W(ARUSER_W),
.RUSER_EN(RUSER_EN),
.RUSER_W(RUSER_W)
) m_axil();
taxi_axil_adapter
uut (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axil_wr(s_axil),
.s_axil_rd(s_axil),
/*
* AXI4-Lite master interface
*/
.m_axil_wr(m_axil),
.m_axil_rd(m_axil)
);
endmodule
`resetall