Files
taxi/src/axi/rtl/taxi_axil_crossbar_addr.sv
2025-11-12 22:01:45 -08:00

302 lines
10 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar address decode and admission control
*/
module taxi_axil_crossbar_addr #
(
// Slave interface index
parameter S = 0,
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Select signal width
parameter SEL_W = $clog2(M_COUNT),
// Address width in bits for address decoding
parameter ADDR_W = 32,
// Address width in bits for address decoding
parameter STRB_W = 4,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Enable write command output
parameter WC_OUTPUT = 0
)
(
input wire logic clk,
input wire logic rst,
/*
* Address input
*/
input wire logic [ADDR_W-1:0] s_axil_aaddr,
input wire logic [2:0] s_axil_aprot,
input wire logic s_axil_avalid,
output wire logic s_axil_aready,
/*
* Select output
*/
output wire logic [SEL_W-1:0] m_select,
output wire logic m_axil_avalid,
input wire logic m_axil_aready,
/*
* Write command output
*/
output wire logic [SEL_W-1:0] m_wc_select,
output wire logic m_wc_decerr,
output wire logic m_wc_valid,
input wire logic m_wc_ready,
/*
* Reply command output
*/
output wire logic [SEL_W-1:0] m_rc_select,
output wire logic m_rc_decerr,
output wire logic m_rc_valid,
input wire logic m_rc_ready
);
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
integer width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = '0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (M_REGIONS < 1)
$fatal(0, "Error: M_REGIONS must be at least 1 (instance %m)");
initial begin
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
/* verilator lint_off UNSIGNED */
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
/* verilator lint_on UNSIGNED */
end
$display("Addressing configuration for axil_crossbar_addr instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [0:0]
STATE_IDLE = 1'd0,
STATE_DECODE = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic s_axil_aready_reg = 1'b0, s_axil_aready_next;
logic [SEL_W-1:0] m_select_reg = '0, m_select_next;
logic m_axil_avalid_reg = 1'b0, m_axil_avalid_next;
logic m_decerr_reg = 1'b0, m_decerr_next;
logic m_wc_valid_reg = 1'b0, m_wc_valid_next;
logic m_rc_valid_reg = 1'b0, m_rc_valid_next;
assign s_axil_aready = s_axil_aready_reg;
assign m_select = m_select_reg;
assign m_axil_avalid = m_axil_avalid_reg;
assign m_wc_select = m_select_reg;
assign m_wc_decerr = m_decerr_reg;
assign m_wc_valid = m_wc_valid_reg;
assign m_rc_select = m_select_reg;
assign m_rc_decerr = m_decerr_reg;
assign m_rc_valid = m_rc_valid_reg;
logic match;
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
s_axil_aready_next = 1'b0;
m_select_next = m_select_reg;
m_axil_avalid_next = m_axil_avalid_reg && !m_axil_aready;
m_decerr_next = m_decerr_reg;
m_wc_valid_next = m_wc_valid_reg && !m_wc_ready;
m_rc_valid_next = m_rc_valid_reg && !m_rc_ready;
case (state_reg)
STATE_IDLE: begin
// idle state, store values
s_axil_aready_next = 1'b0;
if (s_axil_avalid && !s_axil_aready) begin
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !s_axil_aprot[1]) && M_CONNECT_INT[i][S] && (s_axil_aaddr >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = SEL_W'(i);
match = 1'b1;
end
end
end
if (match) begin
// address decode successful
m_axil_avalid_next = 1'b1;
m_decerr_next = 1'b0;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end else begin
// decode error
m_axil_avalid_next = 1'b0;
m_decerr_next = 1'b1;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
if (!m_axil_avalid_next && (!m_wc_valid_next || !WC_OUTPUT) && !m_rc_valid_next) begin
s_axil_aready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DECODE;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axil_aready_reg <= s_axil_aready_next;
m_axil_avalid_reg <= m_axil_avalid_next;
m_wc_valid_reg <= m_wc_valid_next;
m_rc_valid_reg <= m_rc_valid_next;
m_select_reg <= m_select_next;
m_decerr_reg <= m_decerr_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_aready_reg <= 1'b0;
m_axil_avalid_reg <= 1'b0;
m_wc_valid_reg <= 1'b0;
m_rc_valid_reg <= 1'b0;
end
end
endmodule
`resetall