Files
taxi/src/axi/rtl/taxi_axi_crossbar_rd.sv
2025-11-12 22:01:45 -08:00

522 lines
16 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 crossbar (read)
*/
module taxi_axi_crossbar_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.rd_slv s_axi_rd[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.rd_mst m_axi_rd[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axi_rd[0].DATA_W;
localparam S_ADDR_W = s_axi_rd[0].ADDR_W;
localparam STRB_W = s_axi_rd[0].STRB_W;
localparam S_ID_W = s_axi_rd[0].ID_W;
localparam M_ID_W = m_axi_rd[0].ID_W;
localparam logic ARUSER_EN = s_axi_rd[0].ARUSER_EN && m_axi_rd[0].ARUSER_EN;
localparam ARUSER_W = s_axi_rd[0].ARUSER_W;
localparam logic RUSER_EN = s_axi_rd[0].RUSER_EN && m_axi_rd[0].RUSER_EN;
localparam RUSER_W = s_axi_rd[0].RUSER_W;
localparam AXI_M_ADDR_W = m_axi_rd[0].ADDR_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam M_COUNT_P1 = M_COUNT+1;
localparam CL_M_COUNT_P1 = $clog2(M_COUNT_P1);
localparam [S_COUNT-1:0][31:0] S_THREADS_INT = S_THREADS;
localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT;
localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE;
// check configuration
if (s_axi_rd[0].ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axi_rd[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_rd[0].STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
if (M_ID_W < S_ID_W+$clog2(S_COUNT))
$fatal(0, "Error: M_ID_W must be at least $clog2(S_COUNT) larger than S_ID_W (instance %m)");
wire [S_ID_W-1:0] int_s_axi_arid[S_COUNT];
wire [ADDR_W-1:0] int_s_axi_araddr[S_COUNT];
wire [7:0] int_s_axi_arlen[S_COUNT];
wire [2:0] int_s_axi_arsize[S_COUNT];
wire [1:0] int_s_axi_arburst[S_COUNT];
wire int_s_axi_arlock[S_COUNT];
wire [3:0] int_s_axi_arcache[S_COUNT];
wire [2:0] int_s_axi_arprot[S_COUNT];
wire [3:0] int_s_axi_arqos[S_COUNT];
wire [3:0] int_s_axi_arregion[S_COUNT];
wire [ARUSER_W-1:0] int_s_axi_aruser[S_COUNT];
logic [M_COUNT-1:0] int_axi_arvalid[S_COUNT];
logic [S_COUNT-1:0] int_axi_arready[M_COUNT];
wire [M_ID_W-1:0] int_m_axi_rid[M_COUNT];
wire [DATA_W-1:0] int_m_axi_rdata[M_COUNT];
wire [1:0] int_m_axi_rresp[M_COUNT];
wire int_m_axi_rlast[M_COUNT];
wire [RUSER_W-1:0] int_m_axi_ruser[M_COUNT];
logic [S_COUNT-1:0] int_axi_rvalid[M_COUNT];
logic [M_COUNT-1:0] int_axi_rready[S_COUNT];
for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
taxi_axi_if #(
.DATA_W(s_axi_rd[0].DATA_W),
.ADDR_W(s_axi_rd[0].ADDR_W),
.STRB_W(s_axi_rd[0].STRB_W),
.ID_W(s_axi_rd[0].ID_W),
.ARUSER_EN(s_axi_rd[0].ARUSER_EN),
.ARUSER_W(s_axi_rd[0].ARUSER_W),
.RUSER_EN(s_axi_rd[0].RUSER_EN),
.RUSER_W(s_axi_rd[0].RUSER_W)
) int_axi();
// S side register
taxi_axi_register_rd #(
.AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]),
.R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_rd(s_axi_rd[m]),
/*
* AXI4 master interface
*/
.m_axi_rd(int_axi)
);
// address decode and admission control
wire [CL_M_COUNT_INT-1:0] a_select;
wire m_axi_avalid;
wire m_axi_aready;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
wire [S_ID_W-1:0] s_cpl_id;
wire s_cpl_valid;
taxi_axi_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.SEL_W(CL_M_COUNT_INT),
.ADDR_W(ADDR_W),
.ID_W(S_ID_W),
.S_THREADS(S_THREADS_INT[m]),
.S_ACCEPT(S_ACCEPT_INT[m]),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(0)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axi_aid(int_axi.arid),
.s_axi_aaddr(int_axi.araddr),
.s_axi_aprot(int_axi.arprot),
.s_axi_aqos(int_axi.arqos),
.s_axi_avalid(int_axi.arvalid),
.s_axi_aready(int_axi.arready),
/*
* Address output
*/
.m_axi_aregion(int_s_axi_arregion[m]),
.m_select(a_select),
.m_axi_avalid(m_axi_avalid),
.m_axi_aready(m_axi_aready),
/*
* Write command output
*/
.m_wc_select(),
.m_wc_decerr(),
.m_wc_valid(),
.m_wc_ready(1'b1),
/*
* Response command output
*/
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready),
/*
* Completion input
*/
.s_cpl_id(s_cpl_id),
.s_cpl_valid(s_cpl_valid)
);
assign int_s_axi_arid[m] = int_axi.arid;
assign int_s_axi_araddr[m] = int_axi.araddr;
assign int_s_axi_arlen[m] = int_axi.arlen;
assign int_s_axi_arsize[m] = int_axi.arsize;
assign int_s_axi_arburst[m] = int_axi.arburst;
assign int_s_axi_arlock[m] = int_axi.arlock;
assign int_s_axi_arcache[m] = int_axi.arcache;
assign int_s_axi_arprot[m] = int_axi.arprot;
assign int_s_axi_arqos[m] = int_axi.arqos;
assign int_s_axi_aruser[m] = int_axi.aruser;
always_comb begin
int_axi_arvalid[m] = '0;
int_axi_arvalid[m][a_select] = m_axi_avalid;
end
assign m_axi_aready = int_axi_arready[a_select][m];
// decode error handling
logic [S_ID_W-1:0] decerr_m_axi_rid_reg = '0, decerr_m_axi_rid_next;
logic decerr_m_axi_rlast_reg = 1'b0, decerr_m_axi_rlast_next;
logic decerr_m_axi_rvalid_reg = 1'b0, decerr_m_axi_rvalid_next;
wire decerr_m_axi_rready;
logic [7:0] decerr_len_reg = 8'd0, decerr_len_next;
assign m_rc_ready = !decerr_m_axi_rvalid_reg;
always_comb begin
decerr_len_next = decerr_len_reg;
decerr_m_axi_rid_next = decerr_m_axi_rid_reg;
decerr_m_axi_rlast_next = decerr_m_axi_rlast_reg;
decerr_m_axi_rvalid_next = decerr_m_axi_rvalid_reg;
if (decerr_m_axi_rvalid_reg) begin
if (decerr_m_axi_rready) begin
if (decerr_len_reg != 0) begin
decerr_len_next = decerr_len_reg-1;
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end else begin
decerr_m_axi_rvalid_next = 1'b0;
end
end
end else if (m_rc_valid && m_rc_ready) begin
decerr_len_next = int_axi.arlen;
decerr_m_axi_rid_next = int_axi.arid;
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end
end
always_ff @(posedge clk) begin
decerr_m_axi_rvalid_reg <= decerr_m_axi_rvalid_next;
decerr_m_axi_rid_reg <= decerr_m_axi_rid_next;
decerr_m_axi_rlast_reg <= decerr_m_axi_rlast_next;
decerr_len_reg <= decerr_len_next;
if (rst) begin
decerr_m_axi_rvalid_reg <= 1'b0;
end
end
// read response arbitration
wire [M_COUNT_P1-1:0] r_req;
wire [M_COUNT_P1-1:0] r_ack;
wire [M_COUNT_P1-1:0] r_grant;
wire r_grant_valid;
wire [CL_M_COUNT_P1-1:0] r_grant_index;
taxi_arbiter #(
.PORTS(M_COUNT_P1),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
r_arb_inst (
.clk(clk),
.rst(rst),
.req(r_req),
.ack(r_ack),
.grant(r_grant),
.grant_valid(r_grant_valid),
.grant_index(r_grant_index)
);
// read response mux
always_comb begin
if (r_grant_index == CL_M_COUNT_P1'(M_COUNT_P1-1)) begin
int_axi.rid = decerr_m_axi_rid_reg;
int_axi.rdata = '0;
int_axi.rresp = 2'b11;
int_axi.rlast = decerr_m_axi_rlast_reg;
int_axi.ruser = '0;
int_axi.rvalid = decerr_m_axi_rvalid_reg & r_grant_valid;
end else begin
int_axi.rid = S_ID_W'(int_m_axi_rid[r_grant_index[CL_M_COUNT_INT-1:0]]);
int_axi.rdata = int_m_axi_rdata[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.rresp = int_m_axi_rresp[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.rlast = int_m_axi_rlast[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.ruser = int_m_axi_ruser[r_grant_index[CL_M_COUNT_INT-1:0]];
int_axi.rvalid = int_axi_rvalid[r_grant_index[CL_M_COUNT_INT-1:0]][m] & r_grant_valid;
end
end
always_comb begin
int_axi_rready[m] = '0;
int_axi_rready[m][r_grant_index[CL_M_COUNT_INT-1:0]] = r_grant_valid && int_axi.rready;
end
assign decerr_m_axi_rready = (r_grant_valid && int_axi.rready) && (r_grant_index == CL_M_COUNT_P1'(M_COUNT_P1-1));
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign r_req[n] = int_axi_rvalid[n][m] && !r_grant[n];
assign r_ack[n] = r_grant_valid && int_axi_rvalid[n][m] && int_axi.rlast && int_axi.rready;
end
assign r_req[M_COUNT_P1-1] = decerr_m_axi_rvalid_reg && !r_grant[M_COUNT_P1-1];
assign r_ack[M_COUNT_P1-1] = r_grant_valid && decerr_m_axi_rvalid_reg && decerr_m_axi_rlast_reg && int_axi.rready;
assign s_cpl_id = int_axi.rid;
assign s_cpl_valid = int_axi.rvalid && int_axi.rready && int_axi.rlast;
end // s_ifaces
for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
taxi_axi_if #(
.DATA_W(m_axi_rd[0].DATA_W),
.ADDR_W(m_axi_rd[0].ADDR_W),
.STRB_W(m_axi_rd[0].STRB_W),
.ID_W(m_axi_rd[0].ID_W),
.ARUSER_EN(m_axi_rd[0].ARUSER_EN),
.ARUSER_W(m_axi_rd[0].ARUSER_W),
.RUSER_EN(m_axi_rd[0].RUSER_EN),
.RUSER_W(m_axi_rd[0].RUSER_W)
) int_axi();
// in-flight transaction count
wire trans_start;
wire trans_complete;
localparam TR_CNT_W = $clog2(M_ISSUE_INT[n]+1);
logic [TR_CNT_W-1:0] trans_count_reg = '0;
wire trans_limit = trans_count_reg >= TR_CNT_W'(M_ISSUE_INT[n]) && !trans_complete;
always_ff @(posedge clk) begin
if (rst) begin
trans_count_reg <= 0;
end else begin
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
end
end
// address arbitration
wire [S_COUNT-1:0] a_req;
wire [S_COUNT-1:0] a_ack;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT_INT-1:0] a_grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
a_arb_inst (
.clk(clk),
.rst(rst),
.req(a_req),
.ack(a_ack),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_index(a_grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (a_req) begin
grant_valid_reg <= 1'b1;
end
if (a_ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign a_grant_valid = grant_valid_reg;
assign a_grant = grant_valid_reg;
assign a_grant_index = '0;
end
// address mux
if (S_COUNT > 1) begin
assign int_axi.arid = {a_grant_index, int_s_axi_arid[a_grant_index]};
end else begin
assign int_axi.arid = int_s_axi_arid[a_grant_index];
end
assign int_axi.araddr = AXI_M_ADDR_W'(int_s_axi_araddr[a_grant_index]);
assign int_axi.arlen = int_s_axi_arlen[a_grant_index];
assign int_axi.arsize = int_s_axi_arsize[a_grant_index];
assign int_axi.arburst = int_s_axi_arburst[a_grant_index];
assign int_axi.arlock = int_s_axi_arlock[a_grant_index];
assign int_axi.arcache = int_s_axi_arcache[a_grant_index];
assign int_axi.arprot = int_s_axi_arprot[a_grant_index];
assign int_axi.arqos = int_s_axi_arqos[a_grant_index];
assign int_axi.arregion = int_s_axi_arregion[a_grant_index];
assign int_axi.aruser = int_s_axi_aruser[a_grant_index];
assign int_axi.arvalid = int_axi_arvalid[a_grant_index][n] && a_grant_valid;
always_comb begin
int_axi_arready[n] = '0;
int_axi_arready[n][a_grant_index] = a_grant_valid && int_axi.arready;
end
for (genvar m = 0; m < S_COUNT; m = m + 1) begin
assign a_req[m] = int_axi_arvalid[m][n] && !a_grant_valid && !trans_limit;
assign a_ack[m] = a_grant[m] && int_axi_arvalid[m][n] && int_axi.arready;
end
assign trans_start = int_axi.arvalid && int_axi.arready && a_grant_valid;
// read response forwarding
wire [CL_S_COUNT_INT-1:0] r_select = CL_S_COUNT_INT'(int_axi.rid >> S_ID_W);
assign int_m_axi_rid[n] = int_axi.rid;
assign int_m_axi_rdata[n] = int_axi.rdata;
assign int_m_axi_rresp[n] = int_axi.rresp;
assign int_m_axi_rlast[n] = int_axi.rlast;
assign int_m_axi_ruser[n] = int_axi.ruser;
always_comb begin
int_axi_rvalid[n] = '0;
int_axi_rvalid[n][r_select] = int_axi.rvalid;
end
assign int_axi.rready = int_axi_rready[r_select][n];
assign trans_complete = int_axi.rvalid && int_axi.rready && int_axi.rlast;
// M side register
taxi_axi_register_rd #(
.AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]),
.R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_rd(int_axi),
/*
* AXI4 master interface
*/
.m_axi_rd(m_axi_rd[n])
);
end // m_ifaces
endmodule
`resetall