Files
taxi/src/axi/rtl/taxi_axi_adapter_rd.sv
Alex Forencich 94a821192c axi: Add AXI width converter module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-08-30 21:10:08 -07:00

814 lines
33 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 width adapter
*/
module taxi_axi_adapter_rd #
(
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter logic CONVERT_BURST = 1'b1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter logic CONVERT_NARROW_BURST = 1'b0
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.rd_slv s_axi_rd,
/*
* AXI4 master interface
*/
taxi_axi_if.rd_mst m_axi_rd
);
// extract parameters
localparam S_DATA_W = s_axi_rd.DATA_W;
localparam ADDR_W = s_axi_rd.ADDR_W;
localparam CL_ADDR_W = $clog2(ADDR_W);
localparam S_STRB_W = s_axi_rd.STRB_W;
localparam ID_W = s_axi_rd.ID_W;
localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axi_rd.ARUSER_EN;
localparam ARUSER_W = s_axi_rd.ARUSER_W;
localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axi_rd.RUSER_EN;
localparam RUSER_W = s_axi_rd.RUSER_W;
localparam M_DATA_W = m_axi_rd.DATA_W;
localparam M_STRB_W = m_axi_rd.STRB_W;
localparam S_ADDR_BIT_OFFSET = $clog2(S_STRB_W);
localparam M_ADDR_BIT_OFFSET = $clog2(M_STRB_W);
localparam S_BYTE_LANES = S_STRB_W;
localparam M_BYTE_LANES = M_STRB_W;
localparam S_BYTE_SIZE = S_DATA_W/S_BYTE_LANES;
localparam M_BYTE_SIZE = M_DATA_W/M_BYTE_LANES;
localparam logic [2:0] S_BURST_SIZE = 3'($clog2(S_STRB_W));
localparam logic [2:0] M_BURST_SIZE = 3'($clog2(M_STRB_W));
// check configuration
if (S_BYTE_SIZE * S_STRB_W != S_DATA_W)
$fatal(0, "Error: AXI slave interface data width not evenly divisible (instance %m)");
if (M_BYTE_SIZE * M_STRB_W != M_DATA_W)
$fatal(0, "Error: AXI master interface data width not evenly divisible (instance %m)");
if (S_BYTE_SIZE != M_BYTE_SIZE)
$fatal(0, "Error: byte size mismatch (instance %m)");
if (2**$clog2(S_BYTE_LANES) != S_BYTE_LANES)
$fatal(0, "Error: AXI slave interface byte lane count must be even power of two (instance %m)");
if (2**$clog2(M_BYTE_LANES) != M_BYTE_LANES)
$fatal(0, "Error: AXI master interface byte lane count must be even power of two (instance %m)");
if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass
// same width; bypass
assign m_axi_rd.arid = s_axi_rd.arid;
assign m_axi_rd.araddr = s_axi_rd.araddr;
assign m_axi_rd.arlen = s_axi_rd.arlen;
assign m_axi_rd.arsize = s_axi_rd.arsize;
assign m_axi_rd.arburst = s_axi_rd.arburst;
assign m_axi_rd.arlock = s_axi_rd.arlock;
assign m_axi_rd.arcache = s_axi_rd.arcache;
assign m_axi_rd.arprot = s_axi_rd.arprot;
assign m_axi_rd.arqos = s_axi_rd.arqos;
assign m_axi_rd.arregion = s_axi_rd.arregion;
assign m_axi_rd.aruser = ARUSER_EN ? s_axi_rd.aruser : '0;
assign m_axi_rd.arvalid = s_axi_rd.arvalid;
assign s_axi_rd.arready = m_axi_rd.arready;
assign s_axi_rd.rid = m_axi_rd.rid;
assign s_axi_rd.rdata = m_axi_rd.rdata;
assign s_axi_rd.rresp = m_axi_rd.rresp;
assign s_axi_rd.rlast = m_axi_rd.rlast;
assign s_axi_rd.ruser = RUSER_EN ? m_axi_rd.ruser : '0;
assign s_axi_rd.rvalid = m_axi_rd.rvalid;
assign m_axi_rd.rready = s_axi_rd.rready;
end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize
// output is wider; upsize
// output bus is wider
localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES;
localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W;
localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES);
localparam CL_SEG_COUNT = $clog2(SEG_COUNT);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
logic [1:0] state_reg = STATE_IDLE, state_next;
logic [ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = '0, resp_next;
logic [RUSER_W-1:0] ruser_reg = '0, ruser_next;
logic [7:0] burst_reg = '0, burst_next;
logic [2:0] burst_size_reg = '0, burst_size_next;
logic [7:0] master_burst_reg = '0, master_burst_next;
logic [2:0] master_burst_size_reg = '0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [ID_W-1:0] m_axi_arid_reg = '0, m_axi_arid_next;
logic [ADDR_W-1:0] m_axi_araddr_reg = '0, m_axi_araddr_next;
logic [7:0] m_axi_arlen_reg = '0, m_axi_arlen_next;
logic [2:0] m_axi_arsize_reg = '0, m_axi_arsize_next;
logic [1:0] m_axi_arburst_reg = '0, m_axi_arburst_next;
logic m_axi_arlock_reg = '0, m_axi_arlock_next;
logic [3:0] m_axi_arcache_reg = '0, m_axi_arcache_next;
logic [2:0] m_axi_arprot_reg = '0, m_axi_arprot_next;
logic [3:0] m_axi_arqos_reg = '0, m_axi_arqos_next;
logic [3:0] m_axi_arregion_reg = '0, m_axi_arregion_next;
logic [ARUSER_W-1:0] m_axi_aruser_reg = '0, m_axi_aruser_next;
logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
logic m_axi_rready_reg = 1'b0, m_axi_rready_next;
// internal datapath
logic [ID_W-1:0] s_axi_rid_int;
logic [S_DATA_W-1:0] s_axi_rdata_int;
logic [1:0] s_axi_rresp_int;
logic s_axi_rlast_int;
logic [RUSER_W-1:0] s_axi_ruser_int;
logic s_axi_rvalid_int;
logic s_axi_rready_int_reg = 1'b0;
wire s_axi_rready_int_early;
assign s_axi_rd.arready = s_axi_arready_reg;
assign m_axi_rd.arid = '0;
assign m_axi_rd.araddr = m_axi_araddr_reg;
assign m_axi_rd.arlen = m_axi_arlen_reg;
assign m_axi_rd.arsize = m_axi_arsize_reg;
assign m_axi_rd.arburst = m_axi_arburst_reg;
assign m_axi_rd.arlock = m_axi_arlock_reg;
assign m_axi_rd.arcache = m_axi_arcache_reg;
assign m_axi_rd.arprot = m_axi_arprot_reg;
assign m_axi_rd.arqos = m_axi_arqos_reg;
assign m_axi_rd.arregion = m_axi_arregion_reg;
assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0;
assign m_axi_rd.arvalid = m_axi_arvalid_reg;
assign m_axi_rd.rready = m_axi_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
ruser_next = ruser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
m_axi_arid_next = m_axi_arid_reg;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arsize_next = m_axi_arsize_reg;
m_axi_arburst_next = m_axi_arburst_reg;
m_axi_arlock_next = m_axi_arlock_reg;
m_axi_arcache_next = m_axi_arcache_reg;
m_axi_arprot_next = m_axi_arprot_reg;
m_axi_arqos_next = m_axi_arqos_reg;
m_axi_arregion_next = m_axi_arregion_reg;
m_axi_aruser_next = m_axi_aruser_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_rd.arready;
m_axi_rready_next = 1'b0;
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rd.rdata[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W];
s_axi_rresp_int = m_axi_rd.rresp;
s_axi_rlast_int = m_axi_rd.rlast;
s_axi_ruser_int = m_axi_rd.ruser;
s_axi_rvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_rd.arvalid;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axi_arid_next = s_axi_rd.arid;
m_axi_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
if (CONVERT_BURST && s_axi_rd.arcache[1] && (CONVERT_NARROW_BURST || s_axi_rd.arsize == S_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = M_BURST_SIZE;
if (CONVERT_NARROW_BURST) begin
m_axi_arlen_next = 8'((({8'd0, s_axi_rd.arlen} << s_axi_rd.arsize) + 16'(s_axi_rd.araddr[M_ADDR_BIT_OFFSET-1:0])) >> M_BURST_SIZE);
end else begin
m_axi_arlen_next = (s_axi_rd.arlen + 8'(s_axi_rd.araddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET])) >> CL_SEG_COUNT;
end
m_axi_arsize_next = M_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_rd.arsize;
m_axi_arlen_next = s_axi_rd.arlen;
m_axi_arsize_next = s_axi_rd.arsize;
state_next = STATE_DATA;
end
m_axi_arburst_next = s_axi_rd.arburst;
m_axi_arlock_next = s_axi_rd.arlock;
m_axi_arcache_next = s_axi_rd.arcache;
m_axi_arprot_next = s_axi_rd.arprot;
m_axi_arqos_next = s_axi_rd.arqos;
m_axi_arregion_next = s_axi_rd.arregion;
m_axi_aruser_next = s_axi_rd.aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = s_axi_rready_int_early;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rd.rready && m_axi_rd.rvalid) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = m_axi_rd.rdata[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W];
s_axi_rresp_int = m_axi_rd.rresp;
s_axi_rlast_int = m_axi_rd.rlast;
s_axi_ruser_int = m_axi_rd.ruser;
s_axi_rvalid_int = 1'b1;
addr_next = addr_reg + (1 << burst_size_reg);
if (m_axi_rd.rlast) begin
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_rd.arvalid;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axi_rready_next = s_axi_rready_int_early;
if (m_axi_rd.rready && m_axi_rd.rvalid) begin
s_axi_rid_int = id_reg;
data_next = m_axi_rd.rdata;
resp_next = m_axi_rd.rresp;
ruser_next = m_axi_rd.ruser;
s_axi_rdata_int = m_axi_rd.rdata[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W];
s_axi_rresp_int = m_axi_rd.rresp;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_rd.ruser;
s_axi_rvalid_int = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axi_rready_next = 1'b0;
s_axi_arready_next = !m_axi_rd.arvalid;
s_axi_rlast_int = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
state_next = STATE_DATA_READ;
end else begin
m_axi_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axi_rready_next = 1'b0;
if (s_axi_rready_int_reg) begin
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_reg[addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_W +: S_DATA_W];
s_axi_rresp_int = resp_reg;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = ruser_reg;
s_axi_rvalid_int = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axi_rd.arvalid;
s_axi_rlast_int = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[CL_ADDR_W'(master_burst_size_reg)] != addr_reg[CL_ADDR_W'(master_burst_size_reg)]) begin
m_axi_rready_next = s_axi_rready_int_early;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
ruser_reg <= ruser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
m_axi_arid_reg <= m_axi_arid_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
m_axi_arsize_reg <= m_axi_arsize_next;
m_axi_arburst_reg <= m_axi_arburst_next;
m_axi_arlock_reg <= m_axi_arlock_next;
m_axi_arcache_reg <= m_axi_arcache_next;
m_axi_arprot_reg <= m_axi_arprot_next;
m_axi_arqos_reg <= m_axi_arqos_next;
m_axi_arregion_reg <= m_axi_arregion_next;
m_axi_aruser_reg <= m_axi_aruser_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
end
end
// output datapath logic
logic [ID_W-1:0] s_axi_rid_reg = '0;
logic [S_DATA_W-1:0] s_axi_rdata_reg = '0;
logic [1:0] s_axi_rresp_reg = 2'd0;
logic s_axi_rlast_reg = 1'b0;
logic [RUSER_W-1:0] s_axi_ruser_reg = 1'b0;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ID_W-1:0] temp_s_axi_rid_reg = '0;
logic [S_DATA_W-1:0] temp_s_axi_rdata_reg = '0;
logic [1:0] temp_s_axi_rresp_reg = 2'd0;
logic temp_s_axi_rlast_reg = 1'b0;
logic [RUSER_W-1:0] temp_s_axi_ruser_reg = 1'b0;
logic temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next;
// datapath control
logic store_axi_r_int_to_output;
logic store_axi_r_int_to_temp;
logic store_axi_r_temp_to_output;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign s_axi_rready_int_early = s_axi_rd.rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int));
always_comb begin
// transfer sink ready state to source
s_axi_rvalid_next = s_axi_rvalid_reg;
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
store_axi_r_int_to_output = 1'b0;
store_axi_r_int_to_temp = 1'b0;
store_axi_r_temp_to_output = 1'b0;
if (s_axi_rready_int_reg) begin
// input is ready
if (s_axi_rd.rready | ~s_axi_rvalid_reg) begin
// output is ready or currently not valid, transfer data to output
s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_temp = 1'b1;
end
end else if (s_axi_rd.rready) begin
// input is not ready, but output is ready
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
temp_s_axi_rvalid_next = 1'b0;
store_axi_r_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
if (rst) begin
s_axi_rvalid_reg <= 1'b0;
s_axi_rready_int_reg <= 1'b0;
temp_s_axi_rvalid_reg <= 1'b0;
end else begin
s_axi_rvalid_reg <= s_axi_rvalid_next;
s_axi_rready_int_reg <= s_axi_rready_int_early;
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
end
// datapath
if (store_axi_r_int_to_output) begin
s_axi_rid_reg <= s_axi_rid_int;
s_axi_rdata_reg <= s_axi_rdata_int;
s_axi_rresp_reg <= s_axi_rresp_int;
s_axi_rlast_reg <= s_axi_rlast_int;
s_axi_ruser_reg <= s_axi_ruser_int;
end else if (store_axi_r_temp_to_output) begin
s_axi_rid_reg <= temp_s_axi_rid_reg;
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
end
if (store_axi_r_int_to_temp) begin
temp_s_axi_rid_reg <= s_axi_rid_int;
temp_s_axi_rdata_reg <= s_axi_rdata_int;
temp_s_axi_rresp_reg <= s_axi_rresp_int;
temp_s_axi_rlast_reg <= s_axi_rlast_int;
temp_s_axi_ruser_reg <= s_axi_ruser_int;
end
end
end else begin : downsize
// output is narrower; downsize
// output bus is wider
localparam EXPAND = M_BYTE_LANES > S_BYTE_LANES;
localparam DATA_W = EXPAND ? M_DATA_W : S_DATA_W;
localparam STRB_W = EXPAND ? M_STRB_W : S_STRB_W;
// required number of segments in wider bus
localparam SEG_COUNT = EXPAND ? (M_BYTE_LANES / S_BYTE_LANES) : (S_BYTE_LANES / M_BYTE_LANES);
// data width and keep width per segment
localparam SEG_DATA_W = DATA_W / SEG_COUNT;
localparam SEG_STRB_W = STRB_W / SEG_COUNT;
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_DATA = 1'd1;
logic [0:0] state_reg = STATE_IDLE, state_next;
logic [ID_W-1:0] id_reg = '0, id_next;
logic [ADDR_W-1:0] addr_reg = '0, addr_next;
logic [DATA_W-1:0] data_reg = '0, data_next;
logic [1:0] resp_reg = '0, resp_next;
logic [RUSER_W-1:0] ruser_reg = '0, ruser_next;
logic [7:0] burst_reg = '0, burst_next;
logic [2:0] burst_size_reg = '0, burst_size_next;
logic [7:0] master_burst_reg = '0, master_burst_next;
logic [2:0] master_burst_size_reg = '0, master_burst_size_next;
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
logic [ID_W-1:0] m_axi_arid_reg = '0, m_axi_arid_next;
logic [ADDR_W-1:0] m_axi_araddr_reg = '0, m_axi_araddr_next;
logic [7:0] m_axi_arlen_reg = '0, m_axi_arlen_next;
logic [2:0] m_axi_arsize_reg = '0, m_axi_arsize_next;
logic [1:0] m_axi_arburst_reg = '0, m_axi_arburst_next;
logic m_axi_arlock_reg = '0, m_axi_arlock_next;
logic [3:0] m_axi_arcache_reg = '0, m_axi_arcache_next;
logic [2:0] m_axi_arprot_reg = '0, m_axi_arprot_next;
logic [3:0] m_axi_arqos_reg = '0, m_axi_arqos_next;
logic [3:0] m_axi_arregion_reg = '0, m_axi_arregion_next;
logic [ARUSER_W-1:0] m_axi_aruser_reg = '0, m_axi_aruser_next;
logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
logic m_axi_rready_reg = 1'b0, m_axi_rready_next;
// internal datapath
logic [ID_W-1:0] s_axi_rid_int;
logic [S_DATA_W-1:0] s_axi_rdata_int;
logic [1:0] s_axi_rresp_int;
logic s_axi_rlast_int;
logic [RUSER_W-1:0] s_axi_ruser_int;
logic s_axi_rvalid_int;
logic s_axi_rready_int_reg = 1'b0;
wire s_axi_rready_int_early;
assign s_axi_rd.arready = s_axi_arready_reg;
assign m_axi_rd.arid = '0;
assign m_axi_rd.araddr = m_axi_araddr_reg;
assign m_axi_rd.arlen = m_axi_arlen_reg;
assign m_axi_rd.arsize = m_axi_arsize_reg;
assign m_axi_rd.arburst = m_axi_arburst_reg;
assign m_axi_rd.arlock = m_axi_arlock_reg;
assign m_axi_rd.arcache = m_axi_arcache_reg;
assign m_axi_rd.arprot = m_axi_arprot_reg;
assign m_axi_rd.arqos = m_axi_arqos_reg;
assign m_axi_rd.arregion = m_axi_arregion_reg;
assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0;
assign m_axi_rd.arvalid = m_axi_arvalid_reg;
assign m_axi_rd.rready = m_axi_rready_reg;
always_comb begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
ruser_next = ruser_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
m_axi_arid_next = m_axi_arid_reg;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arsize_next = m_axi_arsize_reg;
m_axi_arburst_next = m_axi_arburst_reg;
m_axi_arlock_next = m_axi_arlock_reg;
m_axi_arcache_next = m_axi_arcache_reg;
m_axi_arprot_next = m_axi_arprot_reg;
m_axi_arqos_next = m_axi_arqos_reg;
m_axi_arregion_next = m_axi_arregion_reg;
m_axi_aruser_next = m_axi_aruser_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_rd.arready;
m_axi_rready_next = 1'b0;
// master output is narrower; merge reads and possibly split burst
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_reg;
s_axi_rresp_int = resp_reg;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_rd.ruser;
s_axi_rvalid_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axi_rd.arvalid;
resp_next = 2'd0;
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_rd.arid;
m_axi_arid_next = s_axi_rd.arid;
m_axi_araddr_next = s_axi_rd.araddr;
addr_next = s_axi_rd.araddr;
burst_next = s_axi_rd.arlen;
burst_size_next = s_axi_rd.arsize;
if (s_axi_rd.arsize > M_BURST_SIZE) begin
// need to adjust burst size
if (s_axi_rd.arlen >> (8+M_BURST_SIZE-s_axi_rd.arsize) != 0) begin
// limit burst length to max
master_burst_next = 8'(8'd255 << 3'(s_axi_rd.arsize-M_BURST_SIZE)) | 8'((8'(~s_axi_rd.araddr) & 8'(8'hff >> (8-s_axi_rd.arsize))) >> M_BURST_SIZE);
end else begin
master_burst_next = 8'(s_axi_rd.arlen << 3'(s_axi_rd.arsize-M_BURST_SIZE)) | 8'((8'(~s_axi_rd.araddr) & 8'(8'hff >> (8-s_axi_rd.arsize))) >> M_BURST_SIZE);
end
master_burst_size_next = M_BURST_SIZE;
m_axi_arlen_next = master_burst_next;
m_axi_arsize_next = master_burst_size_next;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_rd.arlen;
master_burst_size_next = s_axi_rd.arsize;
m_axi_arlen_next = s_axi_rd.arlen;
m_axi_arsize_next = s_axi_rd.arsize;
end
m_axi_arburst_next = s_axi_rd.arburst;
m_axi_arlock_next = s_axi_rd.arlock;
m_axi_arcache_next = s_axi_rd.arcache;
m_axi_arprot_next = s_axi_rd.arprot;
m_axi_arqos_next = s_axi_rd.arqos;
m_axi_arregion_next = s_axi_rd.arregion;
m_axi_aruser_next = s_axi_rd.aruser;
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axi_rready_next = s_axi_rready_int_early && !m_axi_rd.arvalid;
if (m_axi_rd.rready && m_axi_rd.rvalid) begin
data_next[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET]*SEG_DATA_W +: SEG_DATA_W] = m_axi_rd.rdata;
if (m_axi_rd.rresp != 0) begin
resp_next = m_axi_rd.rresp;
end
s_axi_rid_int = id_reg;
s_axi_rdata_int = data_next;
s_axi_rresp_int = resp_next;
s_axi_rlast_int = 1'b0;
s_axi_ruser_int = m_axi_rd.ruser;
s_axi_rvalid_int = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = (addr_reg + (1 << master_burst_size_reg)) & ({ADDR_W{1'b1}} << master_burst_size_reg);
m_axi_araddr_next = addr_next;
if (addr_next[CL_ADDR_W'(burst_size_reg)] != addr_reg[CL_ADDR_W'(burst_size_reg)]) begin
data_next = '0;
burst_next = burst_reg - 1;
s_axi_rvalid_int = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_next >> (8+M_BURST_SIZE-burst_size_reg) != 0) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = (burst_next << (burst_size_reg-M_BURST_SIZE)) | (8'hff >> (8-burst_size_reg) >> M_BURST_SIZE);
end
m_axi_arlen_next = master_burst_next;
if (burst_reg == 0) begin
m_axi_rready_next = 1'b0;
s_axi_rlast_int = 1'b1;
s_axi_rvalid_int = 1'b1;
s_axi_arready_next = !m_axi_rd.arvalid;
state_next = STATE_IDLE;
end else begin
// start new burst
m_axi_arvalid_next = 1'b1;
m_axi_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
ruser_reg <= ruser_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_arready_reg <= s_axi_arready_next;
m_axi_arid_reg <= m_axi_arid_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
m_axi_arsize_reg <= m_axi_arsize_next;
m_axi_arburst_reg <= m_axi_arburst_next;
m_axi_arlock_reg <= m_axi_arlock_next;
m_axi_arcache_reg <= m_axi_arcache_next;
m_axi_arprot_reg <= m_axi_arprot_next;
m_axi_arqos_reg <= m_axi_arqos_next;
m_axi_arregion_reg <= m_axi_arregion_next;
m_axi_aruser_reg <= m_axi_aruser_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
end
end
// output datapath logic
logic [ID_W-1:0] s_axi_rid_reg = '0;
logic [S_DATA_W-1:0] s_axi_rdata_reg = '0;
logic [1:0] s_axi_rresp_reg = 2'd0;
logic s_axi_rlast_reg = 1'b0;
logic [RUSER_W-1:0] s_axi_ruser_reg = 1'b0;
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
logic [ID_W-1:0] temp_s_axi_rid_reg = '0;
logic [S_DATA_W-1:0] temp_s_axi_rdata_reg = '0;
logic [1:0] temp_s_axi_rresp_reg = 2'd0;
logic temp_s_axi_rlast_reg = 1'b0;
logic [RUSER_W-1:0] temp_s_axi_ruser_reg = 1'b0;
logic temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next;
// datapath control
logic store_axi_r_int_to_output;
logic store_axi_r_int_to_temp;
logic store_axi_r_temp_to_output;
assign s_axi_rd.rid = s_axi_rid_reg;
assign s_axi_rd.rdata = s_axi_rdata_reg;
assign s_axi_rd.rresp = s_axi_rresp_reg;
assign s_axi_rd.rlast = s_axi_rlast_reg;
assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0;
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign s_axi_rready_int_early = s_axi_rd.rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int));
always_comb begin
// transfer sink ready state to source
s_axi_rvalid_next = s_axi_rvalid_reg;
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
store_axi_r_int_to_output = 1'b0;
store_axi_r_int_to_temp = 1'b0;
store_axi_r_temp_to_output = 1'b0;
if (s_axi_rready_int_reg) begin
// input is ready
if (s_axi_rd.rready | ~s_axi_rvalid_reg) begin
// output is ready or currently not valid, transfer data to output
s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_temp = 1'b1;
end
end else if (s_axi_rd.rready) begin
// input is not ready, but output is ready
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
temp_s_axi_rvalid_next = 1'b0;
store_axi_r_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
if (rst) begin
s_axi_rvalid_reg <= 1'b0;
s_axi_rready_int_reg <= 1'b0;
temp_s_axi_rvalid_reg <= 1'b0;
end else begin
s_axi_rvalid_reg <= s_axi_rvalid_next;
s_axi_rready_int_reg <= s_axi_rready_int_early;
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
end
// datapath
if (store_axi_r_int_to_output) begin
s_axi_rid_reg <= s_axi_rid_int;
s_axi_rdata_reg <= s_axi_rdata_int;
s_axi_rresp_reg <= s_axi_rresp_int;
s_axi_rlast_reg <= s_axi_rlast_int;
s_axi_ruser_reg <= s_axi_ruser_int;
end else if (store_axi_r_temp_to_output) begin
s_axi_rid_reg <= temp_s_axi_rid_reg;
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
end
if (store_axi_r_int_to_temp) begin
temp_s_axi_rid_reg <= s_axi_rid_int;
temp_s_axi_rdata_reg <= s_axi_rdata_int;
temp_s_axi_rresp_reg <= s_axi_rresp_int;
temp_s_axi_rlast_reg <= s_axi_rlast_int;
temp_s_axi_ruser_reg <= s_axi_ruser_int;
end
end
end
endmodule
`resetall