lss: Add I2C master module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-03-19 10:41:16 -07:00
parent 1e3e298d9e
commit 44c811f82a
5 changed files with 1216 additions and 1 deletions

View File

@@ -84,8 +84,9 @@ To facilitate the dual-license model, contributions to the project can only be a
* LFSR self-synchronizing scrambler * LFSR self-synchronizing scrambler
* LFSR self-synchronizing descrambler * LFSR self-synchronizing descrambler
* Low-speed serial * Low-speed serial
* UART * I2C master
* MDIO master * MDIO master
* UART
* Primitives * Primitives
* Arbiter * Arbiter
* Priority encoder * Priority encoder

896
rtl/lss/taxi_i2c_master.sv Normal file
View File

@@ -0,0 +1,896 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2015-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* I2C master
*/
module taxi_i2c_master (
input wire logic clk,
input wire logic rst,
/*
* Host interface
*/
taxi_axis_if.snk s_axis_cmd,
taxi_axis_if.snk s_axis_data,
taxi_axis_if.src m_axis_data,
/*
* I2C interface
*/
input wire logic scl_i,
output wire logic scl_o,
output wire logic scl_t,
input wire logic sda_i,
output wire logic sda_o,
output wire logic sda_t,
/*
* Status
*/
output wire logic busy,
output wire logic bus_control,
output wire logic bus_active,
output wire logic missed_ack,
/*
* Configuration
*/
input wire logic [15:0] prescale,
input wire logic stop_on_idle
);
/*
I2C
Read
__ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __
sda \__/_6_X_5_X_4_X_3_X_2_X_1_X_0_\_R___A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_\_A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_\_A____/
____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____
scl ST \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ SP
Write
__ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __
sda \__/_6_X_5_X_4_X_3_X_2_X_1_X_0_/ W \_A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_\_A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_/ N \__/
____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____
scl ST \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ SP
Command encoding:
cmd[6:0] address
cmd[7] start
cmd[8] read
cmd[9] write
cmd[10] write_multiple
cmd[11] stop
Commands:
read
read data byte
set start to force generation of a start condition
start is implied when bus is inactive or active with write or different address
set stop to issue a stop condition after reading current byte
if stop is set with read command, then m_axis_data_tlast will be set
write
write data byte
set start to force generation of a start condition
start is implied when bus is inactive or active with read or different address
set stop to issue a stop condition after writing current byte
write multiple
write multiple data bytes (until s_axis_data_tlast)
set start to force generation of a start condition
start is implied when bus is inactive or active with read or different address
set stop to issue a stop condition after writing block
stop
issue stop condition if bus is active
Status:
busy
module is communicating over the bus
bus_control
module has control of bus in active state
bus_active
bus is active, not necessarily controlled by this module
missed_ack
strobed when a slave ack is missed
Parameters:
prescale
set prescale to 1/4 of the minimum clock period in units
of input clk cycles (prescale = Fclk / (FI2Cclk * 4))
stop_on_idle
automatically issue stop when command input is not valid
Example of interfacing with tristate pins:
(this will work for any tristate bus)
assign scl_i = scl_pin;
assign scl_pin = scl_t ? 1'bz : scl_o;
assign sda_i = sda_pin;
assign sda_pin = sda_t ? 1'bz : sda_o;
Equivalent code that does not use *_t connections:
(we can get away with this because I2C is open-drain)
assign scl_i = scl_pin;
assign scl_pin = scl_o ? 1'bz : 1'b0;
assign sda_i = sda_pin;
assign sda_pin = sda_o ? 1'bz : 1'b0;
Example of two interconnected I2C devices:
assign scl_1_i = scl_1_o & scl_2_o;
assign scl_2_i = scl_1_o & scl_2_o;
assign sda_1_i = sda_1_o & sda_2_o;
assign sda_2_i = sda_1_o & sda_2_o;
Example of two I2C devices sharing the same pins:
assign scl_1_i = scl_pin;
assign scl_2_i = scl_pin;
assign scl_pin = (scl_1_o & scl_2_o) ? 1'bz : 1'b0;
assign sda_1_i = sda_pin;
assign sda_2_i = sda_pin;
assign sda_pin = (sda_1_o & sda_2_o) ? 1'bz : 1'b0;
Notes:
scl_o should not be connected directly to scl_i, only via AND logic or a tristate
I/O pin. This would prevent devices from stretching the clock period.
*/
localparam [3:0]
STATE_IDLE = 4'd0,
STATE_ACTIVE_WRITE = 4'd1,
STATE_ACTIVE_READ = 4'd2,
STATE_START_WAIT = 4'd3,
STATE_START = 4'd4,
STATE_ADDRESS_1 = 4'd5,
STATE_ADDRESS_2 = 4'd6,
STATE_WRITE_1 = 4'd7,
STATE_WRITE_2 = 4'd8,
STATE_WRITE_3 = 4'd9,
STATE_READ = 4'd10,
STATE_STOP = 4'd11;
logic [3:0] state_reg = STATE_IDLE, state_next;
localparam [3:0]
PHY_STATE_IDLE = 4'd0,
PHY_STATE_ACTIVE = 4'd1,
PHY_STATE_REPEATED_START_1 = 4'd2,
PHY_STATE_REPEATED_START_2 = 4'd3,
PHY_STATE_START_1 = 4'd4,
PHY_STATE_START_2 = 4'd5,
PHY_STATE_WRITE_BIT_1 = 4'd6,
PHY_STATE_WRITE_BIT_2 = 4'd7,
PHY_STATE_WRITE_BIT_3 = 4'd8,
PHY_STATE_READ_BIT_1 = 4'd9,
PHY_STATE_READ_BIT_2 = 4'd10,
PHY_STATE_READ_BIT_3 = 4'd11,
PHY_STATE_READ_BIT_4 = 4'd12,
PHY_STATE_STOP_1 = 4'd13,
PHY_STATE_STOP_2 = 4'd14,
PHY_STATE_STOP_3 = 4'd15;
logic [3:0] phy_state_reg = STATE_IDLE, phy_state_next;
logic phy_start_bit;
logic phy_stop_bit;
logic phy_write_bit;
logic phy_read_bit;
logic phy_release_bus;
logic phy_tx_data;
logic phy_rx_data_reg = 1'b0, phy_rx_data_next;
logic [6:0] addr_reg = '0, addr_next;
logic [7:0] data_reg = '0, data_next;
logic last_reg = 1'b0, last_next;
logic mode_read_reg = 1'b0, mode_read_next;
logic mode_write_multiple_reg = 1'b0, mode_write_multiple_next;
logic mode_stop_reg = 1'b0, mode_stop_next;
logic [16:0] delay_reg = '0, delay_next;
logic delay_scl_reg = 1'b0, delay_scl_next;
logic delay_sda_reg = 1'b0, delay_sda_next;
logic [3:0] bit_count_reg = '0, bit_count_next;
logic s_axis_cmd_ready_reg = 1'b0, s_axis_cmd_ready_next;
logic s_axis_data_tready_reg = 1'b0, s_axis_data_tready_next;
logic [7:0] m_axis_data_tdata_reg = '0, m_axis_data_tdata_next;
logic m_axis_data_tvalid_reg = 1'b0, m_axis_data_tvalid_next;
logic m_axis_data_tlast_reg = 1'b0, m_axis_data_tlast_next;
logic scl_i_reg = 1'b1;
logic sda_i_reg = 1'b1;
logic scl_o_reg = 1'b1, scl_o_next;
logic sda_o_reg = 1'b1, sda_o_next;
logic last_scl_i_reg = 1'b1;
logic last_sda_i_reg = 1'b1;
logic busy_reg = 1'b0;
logic bus_active_reg = 1'b0;
logic bus_control_reg = 1'b0, bus_control_next;
logic missed_ack_reg = 1'b0, missed_ack_next;
wire [6:0] s_axis_cmd_address = s_axis_cmd.tdata[6:0];
wire s_axis_cmd_start = s_axis_cmd.tdata[7];
wire s_axis_cmd_read = s_axis_cmd.tdata[8];
wire s_axis_cmd_write = s_axis_cmd.tdata[9];
wire s_axis_cmd_write_multi = s_axis_cmd.tdata[10];
wire s_axis_cmd_stop = s_axis_cmd.tdata[11];
assign s_axis_cmd.tready = s_axis_cmd_ready_reg;
assign s_axis_data.tready = s_axis_data_tready_reg;
assign m_axis_data.tdata = m_axis_data_tdata_reg;
assign m_axis_data.tkeep = '1;
assign m_axis_data.tstrb = m_axis_data.tkeep;
assign m_axis_data.tvalid = m_axis_data_tvalid_reg;
assign m_axis_data.tlast = m_axis_data_tlast_reg;
assign m_axis_data.tid = '0;
assign m_axis_data.tdest = '0;
assign m_axis_data.tuser = '0;
assign scl_o = scl_o_reg;
assign scl_t = scl_o_reg;
assign sda_o = sda_o_reg;
assign sda_t = sda_o_reg;
assign busy = busy_reg;
assign bus_active = bus_active_reg;
assign bus_control = bus_control_reg;
assign missed_ack = missed_ack_reg;
wire scl_posedge = scl_i_reg && !last_scl_i_reg;
wire scl_negedge = !scl_i_reg && last_scl_i_reg;
wire sda_posedge = sda_i_reg && !last_sda_i_reg;
wire sda_negedge = !sda_i_reg && last_sda_i_reg;
wire start_bit = sda_negedge && scl_i_reg;
wire stop_bit = sda_posedge && scl_i_reg;
always_comb begin
state_next = STATE_IDLE;
phy_start_bit = 1'b0;
phy_stop_bit = 1'b0;
phy_write_bit = 1'b0;
phy_read_bit = 1'b0;
phy_tx_data = 1'b0;
phy_release_bus = 1'b0;
addr_next = addr_reg;
data_next = data_reg;
last_next = last_reg;
mode_read_next = mode_read_reg;
mode_write_multiple_next = mode_write_multiple_reg;
mode_stop_next = mode_stop_reg;
bit_count_next = bit_count_reg;
s_axis_cmd_ready_next = 1'b0;
s_axis_data_tready_next = 1'b0;
m_axis_data_tdata_next = m_axis_data_tdata_reg;
m_axis_data_tvalid_next = m_axis_data_tvalid_reg && !m_axis_data.tready;
m_axis_data_tlast_next = m_axis_data_tlast_reg;
missed_ack_next = 1'b0;
// generate delays
if (phy_state_reg != PHY_STATE_IDLE && phy_state_reg != PHY_STATE_ACTIVE) begin
// wait for phy operation
state_next = state_reg;
end else begin
// process states
case (state_reg)
STATE_IDLE: begin
// line idle
s_axis_cmd_ready_next = 1'b1;
if (s_axis_cmd.tready && s_axis_cmd.tvalid) begin
// command valid
if (s_axis_cmd_read ^ (s_axis_cmd_write || s_axis_cmd_write_multi)) begin
// read or write command
addr_next = s_axis_cmd_address;
mode_read_next = s_axis_cmd_read;
mode_write_multiple_next = s_axis_cmd_write_multi;
mode_stop_next = s_axis_cmd_stop;
s_axis_cmd_ready_next = 1'b0;
// start bit
if (bus_active) begin
state_next = STATE_START_WAIT;
end else begin
phy_start_bit = 1'b1;
bit_count_next = 4'd8;
state_next = STATE_ADDRESS_1;
end
end else begin
// invalid or unspecified - ignore
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_ACTIVE_WRITE: begin
// line active with current address and read/write mode
s_axis_cmd_ready_next = 1'b1;
if (s_axis_cmd.tready && s_axis_cmd.tvalid) begin
// command valid
if (s_axis_cmd_read ^ (s_axis_cmd_write || s_axis_cmd_write_multi)) begin
// read or write command
addr_next = s_axis_cmd_address;
mode_read_next = s_axis_cmd_read;
mode_write_multiple_next = s_axis_cmd_write_multi;
mode_stop_next = s_axis_cmd_stop;
s_axis_cmd_ready_next = 1'b0;
if (s_axis_cmd_start || s_axis_cmd_address != addr_reg || s_axis_cmd_read) begin
// address or mode mismatch or forced start - repeated start
// repeated start bit
phy_start_bit = 1'b1;
bit_count_next = 4'd8;
state_next = STATE_ADDRESS_1;
end else begin
// address and mode match
// start write
s_axis_data_tready_next = 1'b1;
state_next = STATE_WRITE_1;
end
end else if (s_axis_cmd_stop && !(s_axis_cmd_read || s_axis_cmd_write || s_axis_cmd_write_multi)) begin
// stop command
phy_stop_bit = 1'b1;
state_next = STATE_IDLE;
end else begin
// invalid or unspecified - ignore
state_next = STATE_ACTIVE_WRITE;
end
end else begin
if (stop_on_idle && s_axis_cmd.tready && !s_axis_cmd.tvalid) begin
// no waiting command and stop_on_idle selected, issue stop condition
phy_stop_bit = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_ACTIVE_WRITE;
end
end
end
STATE_ACTIVE_READ: begin
// line active to current address
s_axis_cmd_ready_next = !m_axis_data.tvalid;
if (s_axis_cmd.tready && s_axis_cmd.tvalid) begin
// command valid
if (s_axis_cmd_read ^ (s_axis_cmd_write || s_axis_cmd_write_multi)) begin
// read or write command
addr_next = s_axis_cmd_address;
mode_read_next = s_axis_cmd_read;
mode_write_multiple_next = s_axis_cmd_write_multi;
mode_stop_next = s_axis_cmd_stop;
s_axis_cmd_ready_next = 1'b0;
if (s_axis_cmd_start || s_axis_cmd_address != addr_reg || s_axis_cmd_write) begin
// address or mode mismatch or forced start - repeated start
// write nack for previous read
phy_write_bit = 1'b1;
phy_tx_data = 1'b1;
// repeated start bit
state_next = STATE_START;
end else begin
// address and mode match
// write ack for previous read
phy_write_bit = 1'b1;
phy_tx_data = 1'b0;
// start next read
bit_count_next = 4'd8;
data_next = 8'd0;
state_next = STATE_READ;
end
end else if (s_axis_cmd_stop && !(s_axis_cmd_read || s_axis_cmd_write || s_axis_cmd_write_multi)) begin
// stop command
// write nack for previous read
phy_write_bit = 1'b1;
phy_tx_data = 1'b1;
// send stop bit
state_next = STATE_STOP;
end else begin
// invalid or unspecified - ignore
state_next = STATE_ACTIVE_READ;
end
end else begin
if (stop_on_idle && s_axis_cmd.tready && !s_axis_cmd.tvalid) begin
// no waiting command and stop_on_idle selected, issue stop condition
// write ack for previous read
phy_write_bit = 1'b1;
phy_tx_data = 1'b1;
// send stop bit
state_next = STATE_STOP;
end else begin
state_next = STATE_ACTIVE_READ;
end
end
end
STATE_START_WAIT: begin
// wait for bus idle
if (bus_active) begin
state_next = STATE_START_WAIT;
end else begin
// bus is idle, take control
phy_start_bit = 1'b1;
bit_count_next = 4'd8;
state_next = STATE_ADDRESS_1;
end
end
STATE_START: begin
// send start bit
phy_start_bit = 1'b1;
bit_count_next = 4'd8;
state_next = STATE_ADDRESS_1;
end
STATE_ADDRESS_1: begin
// send address
bit_count_next = bit_count_reg - 1;
if (bit_count_reg > 1) begin
// send address
phy_write_bit = 1'b1;
phy_tx_data = addr_reg[bit_count_reg-2];
state_next = STATE_ADDRESS_1;
end else if (bit_count_reg != 0) begin
// send read/write bit
phy_write_bit = 1'b1;
phy_tx_data = mode_read_reg;
state_next = STATE_ADDRESS_1;
end else begin
// read ack bit
phy_read_bit = 1'b1;
state_next = STATE_ADDRESS_2;
end
end
STATE_ADDRESS_2: begin
// read ack bit
missed_ack_next = phy_rx_data_reg;
if (mode_read_reg) begin
// start read
bit_count_next = 4'd8;
state_next = STATE_READ;
end else begin
// start write
s_axis_data_tready_next = 1'b1;
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_1: begin
s_axis_data_tready_next = 1'b1;
if (s_axis_data.tready && s_axis_data.tvalid) begin
// got data, start write
data_next = s_axis_data.tdata;
last_next = s_axis_data.tlast;
bit_count_next = 4'd8;
s_axis_data_tready_next = 1'b0;
state_next = STATE_WRITE_2;
end else begin
// wait for data
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_2: begin
// send data
bit_count_next = bit_count_reg - 1;
if (bit_count_reg != 0) begin
// write data bit
phy_write_bit = 1'b1;
phy_tx_data = data_reg[bit_count_reg-1];
state_next = STATE_WRITE_2;
end else begin
// read ack bit
phy_read_bit = 1'b1;
state_next = STATE_WRITE_3;
end
end
STATE_WRITE_3: begin
// read ack bit
missed_ack_next = phy_rx_data_reg;
if (mode_write_multiple_reg && !last_reg) begin
// more to write
state_next = STATE_WRITE_1;
end else if (mode_stop_reg) begin
// last cycle and stop selected
phy_stop_bit = 1'b1;
state_next = STATE_IDLE;
end else begin
// otherwise, return to bus active state
state_next = STATE_ACTIVE_WRITE;
end
end
STATE_READ: begin
// read data
bit_count_next = bit_count_reg - 1;
data_next = {data_reg[6:0], phy_rx_data_reg};
if (bit_count_reg != 0) begin
// read next bit
phy_read_bit = 1'b1;
state_next = STATE_READ;
end else begin
// output data word
m_axis_data_tdata_next = data_next;
m_axis_data_tvalid_next = 1'b1;
m_axis_data_tlast_next = 1'b0;
if (mode_stop_reg) begin
// send nack and stop
m_axis_data_tlast_next = 1'b1;
phy_write_bit = 1'b1;
phy_tx_data = 1'b1;
state_next = STATE_STOP;
end else begin
// return to bus active state
state_next = STATE_ACTIVE_READ;
end
end
end
STATE_STOP: begin
// send stop bit
phy_stop_bit = 1'b1;
state_next = STATE_IDLE;
end
default: begin
state_next = STATE_IDLE;
end
endcase
end
end
always_comb begin
phy_state_next = PHY_STATE_IDLE;
phy_rx_data_next = phy_rx_data_reg;
delay_next = delay_reg;
delay_scl_next = delay_scl_reg;
delay_sda_next = delay_sda_reg;
scl_o_next = scl_o_reg;
sda_o_next = sda_o_reg;
bus_control_next = bus_control_reg;
if (phy_release_bus) begin
// release bus and return to idle state
sda_o_next = 1'b1;
scl_o_next = 1'b1;
delay_scl_next = 1'b0;
delay_sda_next = 1'b0;
delay_next = '0;
phy_state_next = PHY_STATE_IDLE;
end else if (delay_scl_reg) begin
// wait for SCL to match command
delay_scl_next = scl_o_reg && !scl_i_reg;
phy_state_next = phy_state_reg;
end else if (delay_sda_reg) begin
// wait for SDA to match command
delay_sda_next = sda_o_reg && !sda_i_reg;
phy_state_next = phy_state_reg;
end else if (delay_reg != 0) begin
// time delay
delay_next = delay_reg - 1;
phy_state_next = phy_state_reg;
end else begin
case (phy_state_reg)
PHY_STATE_IDLE: begin
// bus idle - wait for start command
sda_o_next = 1'b1;
scl_o_next = 1'b1;
if (phy_start_bit) begin
sda_o_next = 1'b0;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_START_1;
end else begin
phy_state_next = PHY_STATE_IDLE;
end
end
PHY_STATE_ACTIVE: begin
// bus active
if (phy_start_bit) begin
sda_o_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_REPEATED_START_1;
end else if (phy_write_bit) begin
sda_o_next = phy_tx_data;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_WRITE_BIT_1;
end else if (phy_read_bit) begin
sda_o_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_READ_BIT_1;
end else if (phy_stop_bit) begin
sda_o_next = 1'b0;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_STOP_1;
end else begin
phy_state_next = PHY_STATE_ACTIVE;
end
end
PHY_STATE_REPEATED_START_1: begin
// generate repeated start bit
// ______
// sda XXX/ \_______
// _______
// scl ______/ \___
//
scl_o_next = 1'b1;
delay_scl_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_REPEATED_START_2;
end
PHY_STATE_REPEATED_START_2: begin
// generate repeated start bit
// ______
// sda XXX/ \_______
// _______
// scl ______/ \___
//
sda_o_next = 1'b0;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_START_1;
end
PHY_STATE_START_1: begin
// generate start bit
// ___
// sda \_______
// _______
// scl \___
//
scl_o_next = 1'b0;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_START_2;
end
PHY_STATE_START_2: begin
// generate start bit
// ___
// sda \_______
// _______
// scl \___
//
bus_control_next = 1'b1;
phy_state_next = PHY_STATE_ACTIVE;
end
PHY_STATE_WRITE_BIT_1: begin
// write bit
// ________
// sda X________X
// ____
// scl __/ \__
scl_o_next = 1'b1;
delay_scl_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_WRITE_BIT_2;
end
PHY_STATE_WRITE_BIT_2: begin
// write bit
// ________
// sda X________X
// ____
// scl __/ \__
scl_o_next = 1'b0;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_WRITE_BIT_3;
end
PHY_STATE_WRITE_BIT_3: begin
// write bit
// ________
// sda X________X
// ____
// scl __/ \__
phy_state_next = PHY_STATE_ACTIVE;
end
PHY_STATE_READ_BIT_1: begin
// read bit
// ________
// sda X________X
// ____
// scl __/ \__
scl_o_next = 1'b1;
delay_scl_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_READ_BIT_2;
end
PHY_STATE_READ_BIT_2: begin
// read bit
// ________
// sda X________X
// ____
// scl __/ \__
phy_rx_data_next = sda_i_reg;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_READ_BIT_3;
end
PHY_STATE_READ_BIT_3: begin
// read bit
// ________
// sda X________X
// ____
// scl __/ \__
scl_o_next = 1'b0;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_READ_BIT_4;
end
PHY_STATE_READ_BIT_4: begin
// read bit
// ________
// sda X________X
// ____
// scl __/ \__
phy_state_next = PHY_STATE_ACTIVE;
end
PHY_STATE_STOP_1: begin
// stop bit
// ___
// sda XXX\_______/
// _______
// scl _______/
scl_o_next = 1'b1;
delay_scl_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_STOP_2;
end
PHY_STATE_STOP_2: begin
// stop bit
// ___
// sda XXX\_______/
// _______
// scl _______/
sda_o_next = 1'b1;
delay_next = 17'(prescale);
phy_state_next = PHY_STATE_STOP_3;
end
PHY_STATE_STOP_3: begin
// stop bit
// ___
// sda XXX\_______/
// _______
// scl _______/
bus_control_next = 1'b0;
phy_state_next = PHY_STATE_IDLE;
end
default: begin
phy_state_next = PHY_STATE_IDLE;
end
endcase
end
end
always_ff @(posedge clk) begin
state_reg <= state_next;
phy_state_reg <= phy_state_next;
phy_rx_data_reg <= phy_rx_data_next;
addr_reg <= addr_next;
data_reg <= data_next;
last_reg <= last_next;
mode_read_reg <= mode_read_next;
mode_write_multiple_reg <= mode_write_multiple_next;
mode_stop_reg <= mode_stop_next;
delay_reg <= delay_next;
delay_scl_reg <= delay_scl_next;
delay_sda_reg <= delay_sda_next;
bit_count_reg <= bit_count_next;
s_axis_cmd_ready_reg <= s_axis_cmd_ready_next;
s_axis_data_tready_reg <= s_axis_data_tready_next;
m_axis_data_tdata_reg <= m_axis_data_tdata_next;
m_axis_data_tlast_reg <= m_axis_data_tlast_next;
m_axis_data_tvalid_reg <= m_axis_data_tvalid_next;
scl_i_reg <= scl_i;
sda_i_reg <= sda_i;
scl_o_reg <= scl_o_next;
sda_o_reg <= sda_o_next;
last_scl_i_reg <= scl_i_reg;
last_sda_i_reg <= sda_i_reg;
busy_reg <= !(state_reg == STATE_IDLE || state_reg == STATE_ACTIVE_WRITE || state_reg == STATE_ACTIVE_READ) || !(phy_state_reg == PHY_STATE_IDLE || phy_state_reg == PHY_STATE_ACTIVE);
if (start_bit) begin
bus_active_reg <= 1'b1;
end else if (stop_bit) begin
bus_active_reg <= 1'b0;
end else begin
bus_active_reg <= bus_active_reg;
end
bus_control_reg <= bus_control_next;
missed_ack_reg <= missed_ack_next;
if (rst) begin
state_reg <= STATE_IDLE;
phy_state_reg <= PHY_STATE_IDLE;
delay_reg <= '0;
delay_scl_reg <= 1'b0;
delay_sda_reg <= 1'b0;
s_axis_cmd_ready_reg <= 1'b0;
s_axis_data_tready_reg <= 1'b0;
m_axis_data_tvalid_reg <= 1'b0;
scl_o_reg <= 1'b1;
sda_o_reg <= 1'b1;
busy_reg <= 1'b0;
bus_active_reg <= 1'b0;
bus_control_reg <= 1'b0;
missed_ack_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,47 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2020-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ns
DUT = taxi_i2c_master
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += ../../../rtl/lss/$(DUT).sv
VERILOG_SOURCES += ../../../rtl/axis/taxi_axis_if.sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
# export PARAM_DEFAULT_PRESCALE := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,189 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2020-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import logging
import os
import cocotb_test.simulator
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, FallingEdge
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamSource, AxiStreamSink, AxiStreamBus
from cocotbext.i2c import I2cMemory
CMD_START = 1 << 7
CMD_READ = 1 << 8
CMD_WRITE = 1 << 9
CMD_WRITE_MULTI = 1 << 10
CMD_STOP = 1 << 11
class TB:
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.fork(Clock(dut.clk, 8, units="ns").start())
self.cmd_source = AxiStreamSource(AxiStreamBus.from_entity(dut.s_axis_cmd), dut.clk, dut.rst)
self.data_source = AxiStreamSource(AxiStreamBus.from_entity(dut.s_axis_data), dut.clk, dut.rst)
self.data_sink = AxiStreamSink(AxiStreamBus.from_entity(dut.m_axis_data), dut.clk, dut.rst)
self.i2c_memory = I2cMemory(sda=dut.sda_o, sda_o=dut.sda_i,
scl=dut.scl_o, scl_o=dut.scl_i, addr=0x50, size=1024)
dut.prescale.setimmediatevalue(2)
dut.stop_on_idle.setimmediatevalue(0)
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def i2c_write_data(self, addr, data, start=0, stop=0):
cmd = CMD_WRITE_MULTI | addr
if start:
cmd |= CMD_START
if stop:
cmd |= CMD_STOP
await self.cmd_source.send([cmd])
await self.data_source.send(data)
await self.data_source.wait()
await self.i2c_wait()
async def i2c_read_data(self, addr, count, start=0, stop=0):
for k in range(count):
cmd = CMD_READ | addr
if start and k == 0:
cmd |= CMD_START
if stop and k == count-1:
cmd |= CMD_STOP
await self.cmd_source.send([cmd])
return (await self.data_sink.recv()).tdata
async def i2c_wait(self):
if self.dut.busy.value.integer:
await FallingEdge(self.dut.busy)
async def i2c_wait_bus_idle(self):
if self.dut.bus_active.value.integer:
await FallingEdge(self.dut.bus_active)
async def run_test(dut, payload_lengths=None, payload_data=None):
tb = TB(dut)
await tb.reset()
tb.log.info("Test write")
test_data = b'\x11\x22\x33\x44'
await tb.i2c_write_data(0x50, b'\x00\x04'+test_data, stop=1)
await tb.i2c_wait_bus_idle()
data = tb.i2c_memory.read_mem(4, 4)
tb.log.info("Read data: %s", data)
assert data == test_data
# assert not missed ack
tb.log.info("Test read")
await tb.i2c_write_data(0x50, b'\x00\x04')
read_data = await tb.i2c_read_data(0x50, 4, start=1, stop=1)
tb.log.info("Read data: %s", read_data)
assert read_data == test_data
# assert not missed ack
tb.log.info("Test write to nonexistent device")
await tb.i2c_write_data(0x55, b'\x00\x04'+b'\xde\xad\xbe\xef', stop=1)
await tb.i2c_wait_bus_idle()
# assert missed ack
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
if cocotb.SIM_NAME:
factory = TestFactory(run_test)
factory.generate_tests()
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
def test_taxi_i2c_master(request):
dut = "taxi_i2c_master"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, "lss", f"{dut}.sv"),
os.path.join(rtl_dir, "axis", "taxi_axis_if.sv"),
]
parameters = {}
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,82 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* I2C master testbench
*/
module test_taxi_i2c_master
();
logic clk;
logic rst;
taxi_axis_if #(.DATA_W(12), .KEEP_W(1)) s_axis_cmd();
taxi_axis_if #(.DATA_W(8)) s_axis_data();
taxi_axis_if #(.DATA_W(8)) m_axis_data();
logic scl_i;
logic scl_o;
logic scl_t;
logic sda_i;
logic sda_o;
logic sda_t;
logic busy;
logic bus_control;
logic bus_active;
logic missed_ack;
logic [15:0] prescale;
logic stop_on_idle;
taxi_i2c_master
uut (
.clk(clk),
.rst(rst),
/*
* Host interface
*/
.s_axis_cmd(s_axis_cmd),
.s_axis_data(s_axis_data),
.m_axis_data(m_axis_data),
/*
* I2C interface
*/
.scl_i(scl_i),
.scl_o(scl_o),
.scl_t(scl_t),
.sda_i(sda_i),
.sda_o(sda_o),
.sda_t(sda_t),
/*
* Status
*/
.busy(busy),
.bus_control(bus_control),
.bus_active(bus_active),
.missed_ack(missed_ack),
/*
* Configuration
*/
.prescale(prescale),
.stop_on_idle(stop_on_idle)
);
endmodule
`resetall