mirror of
https://github.com/fpganinja/taxi.git
synced 2025-12-14 10:48:40 -08:00
Reorganize repository
Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
257
src/axi/rtl/taxi_axi_if.sv
Normal file
257
src/axi/rtl/taxi_axi_if.sv
Normal file
@@ -0,0 +1,257 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
/*
|
||||
|
||||
Copyright (c) 2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
interface taxi_axi_if #(
|
||||
// Width of data bus in bits
|
||||
parameter DATA_W = 32,
|
||||
// Width of address bus in bits
|
||||
parameter ADDR_W = 32,
|
||||
// Width of wstrb (width of data bus in words)
|
||||
parameter STRB_W = (DATA_W/8),
|
||||
// Width of ID signal
|
||||
parameter ID_W = 8,
|
||||
// Use awuser signal
|
||||
parameter logic AWUSER_EN = 1'b0,
|
||||
// Width of awuser signal
|
||||
parameter AWUSER_W = 1,
|
||||
// Use wuser signal
|
||||
parameter logic WUSER_EN = 1'b0,
|
||||
// Width of wuser signal
|
||||
parameter WUSER_W = 1,
|
||||
// Use buser signal
|
||||
parameter logic BUSER_EN = 1'b0,
|
||||
// Width of buser signal
|
||||
parameter BUSER_W = 1,
|
||||
// Use aruser signal
|
||||
parameter logic ARUSER_EN = 1'b0,
|
||||
// Width of aruser signal
|
||||
parameter ARUSER_W = 1,
|
||||
// Use ruser signal
|
||||
parameter logic RUSER_EN = 1'b0,
|
||||
// Width of ruser signal
|
||||
parameter RUSER_W = 1
|
||||
)
|
||||
();
|
||||
// AW
|
||||
logic [ID_W-1:0] awid;
|
||||
logic [ADDR_W-1:0] awaddr;
|
||||
logic [7:0] awlen;
|
||||
logic [2:0] awsize;
|
||||
logic [1:0] awburst;
|
||||
logic awlock;
|
||||
logic [3:0] awcache;
|
||||
logic [2:0] awprot;
|
||||
logic [3:0] awqos;
|
||||
logic [3:0] awregion;
|
||||
logic [AWUSER_W-1:0] awuser;
|
||||
logic awvalid;
|
||||
logic awready;
|
||||
// W
|
||||
logic [DATA_W-1:0] wdata;
|
||||
logic [STRB_W-1:0] wstrb;
|
||||
logic wlast;
|
||||
logic [WUSER_W-1:0] wuser;
|
||||
logic wvalid;
|
||||
logic wready;
|
||||
// B
|
||||
logic [ID_W-1:0] bid;
|
||||
logic [1:0] bresp;
|
||||
logic [BUSER_W-1:0] buser;
|
||||
logic bvalid;
|
||||
logic bready;
|
||||
// AR
|
||||
logic [ID_W-1:0] arid;
|
||||
logic [ADDR_W-1:0] araddr;
|
||||
logic [7:0] arlen;
|
||||
logic [2:0] arsize;
|
||||
logic [1:0] arburst;
|
||||
logic arlock;
|
||||
logic [3:0] arcache;
|
||||
logic [2:0] arprot;
|
||||
logic [3:0] arqos;
|
||||
logic [3:0] arregion;
|
||||
logic [ARUSER_W-1:0] aruser;
|
||||
logic arvalid;
|
||||
logic arready;
|
||||
// R
|
||||
logic [ID_W-1:0] rid;
|
||||
logic [DATA_W-1:0] rdata;
|
||||
logic [1:0] rresp;
|
||||
logic rlast;
|
||||
logic [RUSER_W-1:0] ruser;
|
||||
logic rvalid;
|
||||
logic rready;
|
||||
|
||||
modport wr_mst (
|
||||
// AW
|
||||
output awid,
|
||||
output awaddr,
|
||||
output awlen,
|
||||
output awsize,
|
||||
output awburst,
|
||||
output awlock,
|
||||
output awcache,
|
||||
output awprot,
|
||||
output awqos,
|
||||
output awregion,
|
||||
output awuser,
|
||||
output awvalid,
|
||||
input awready,
|
||||
// W
|
||||
output wdata,
|
||||
output wstrb,
|
||||
output wlast,
|
||||
output wuser,
|
||||
output wvalid,
|
||||
input wready,
|
||||
// B
|
||||
input bid,
|
||||
input bresp,
|
||||
input buser,
|
||||
input bvalid,
|
||||
output bready
|
||||
);
|
||||
|
||||
modport rd_mst (
|
||||
// AR
|
||||
output arid,
|
||||
output araddr,
|
||||
output arlen,
|
||||
output arsize,
|
||||
output arburst,
|
||||
output arlock,
|
||||
output arcache,
|
||||
output arprot,
|
||||
output arqos,
|
||||
output arregion,
|
||||
output aruser,
|
||||
output arvalid,
|
||||
input arready,
|
||||
// R
|
||||
input rid,
|
||||
input rdata,
|
||||
input rresp,
|
||||
input rlast,
|
||||
input ruser,
|
||||
input rvalid,
|
||||
output rready
|
||||
);
|
||||
|
||||
modport wr_slv (
|
||||
// AW
|
||||
input awid,
|
||||
input awaddr,
|
||||
input awlen,
|
||||
input awsize,
|
||||
input awburst,
|
||||
input awlock,
|
||||
input awcache,
|
||||
input awprot,
|
||||
input awqos,
|
||||
input awregion,
|
||||
input awuser,
|
||||
input awvalid,
|
||||
output awready,
|
||||
// W
|
||||
input wdata,
|
||||
input wstrb,
|
||||
input wlast,
|
||||
input wuser,
|
||||
input wvalid,
|
||||
output wready,
|
||||
// B
|
||||
output bid,
|
||||
output bresp,
|
||||
output buser,
|
||||
output bvalid,
|
||||
input bready
|
||||
);
|
||||
|
||||
modport rd_slv (
|
||||
// AR
|
||||
input arid,
|
||||
input araddr,
|
||||
input arlen,
|
||||
input arsize,
|
||||
input arburst,
|
||||
input arlock,
|
||||
input arcache,
|
||||
input arprot,
|
||||
input arqos,
|
||||
input arregion,
|
||||
input aruser,
|
||||
input arvalid,
|
||||
output arready,
|
||||
// R
|
||||
output rid,
|
||||
output rdata,
|
||||
output rresp,
|
||||
output rlast,
|
||||
output ruser,
|
||||
output rvalid,
|
||||
input rready
|
||||
);
|
||||
|
||||
modport wr_mon (
|
||||
// AW
|
||||
input awid,
|
||||
input awaddr,
|
||||
input awlen,
|
||||
input awsize,
|
||||
input awburst,
|
||||
input awlock,
|
||||
input awcache,
|
||||
input awprot,
|
||||
input awqos,
|
||||
input awregion,
|
||||
input awuser,
|
||||
input awvalid,
|
||||
input awready,
|
||||
// W
|
||||
input wdata,
|
||||
input wstrb,
|
||||
input wlast,
|
||||
input wuser,
|
||||
input wvalid,
|
||||
input wready,
|
||||
// B
|
||||
input bid,
|
||||
input bresp,
|
||||
input buser,
|
||||
input bvalid,
|
||||
input bready
|
||||
);
|
||||
|
||||
modport rd_mon (
|
||||
// AR
|
||||
input arid,
|
||||
input araddr,
|
||||
input arlen,
|
||||
input arsize,
|
||||
input arburst,
|
||||
input arlock,
|
||||
input arcache,
|
||||
input arprot,
|
||||
input arqos,
|
||||
input arregion,
|
||||
input aruser,
|
||||
input arvalid,
|
||||
input arready,
|
||||
// R
|
||||
input rid,
|
||||
input rdata,
|
||||
input rresp,
|
||||
input rlast,
|
||||
input ruser,
|
||||
input rvalid,
|
||||
input rready
|
||||
);
|
||||
|
||||
endinterface
|
||||
327
src/axi/rtl/taxi_axi_ram.sv
Normal file
327
src/axi/rtl/taxi_axi_ram.sv
Normal file
@@ -0,0 +1,327 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 RAM
|
||||
*/
|
||||
module taxi_axi_ram #
|
||||
(
|
||||
// Width of address bus in bits
|
||||
parameter ADDR_W = 16,
|
||||
// Extra pipeline register on output
|
||||
parameter logic PIPELINE_OUTPUT = 1'b0
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4 slave interface
|
||||
*/
|
||||
taxi_axi_if.wr_slv s_axi_wr,
|
||||
taxi_axi_if.rd_slv s_axi_rd
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axi_wr.DATA_W;
|
||||
localparam STRB_W = s_axi_wr.STRB_W;
|
||||
localparam WR_ID_W = s_axi_wr.ID_W;
|
||||
localparam RD_ID_W = s_axi_rd.ID_W;
|
||||
|
||||
localparam VALID_ADDR_W = ADDR_W - $clog2(STRB_W);
|
||||
localparam BYTE_LANES = STRB_W;
|
||||
localparam BYTE_W = DATA_W/BYTE_LANES;
|
||||
|
||||
// check configuration
|
||||
if (BYTE_W * STRB_W != DATA_W)
|
||||
$fatal(0, "Error: AXI data width not evenly divisible (instance %m)");
|
||||
|
||||
if (2**$clog2(BYTE_LANES) != BYTE_LANES)
|
||||
$fatal(0, "Error: AXI byte lane count must be even power of two (instance %m)");
|
||||
|
||||
if (s_axi_wr.DATA_W != s_axi_rd.DATA_W)
|
||||
$fatal(0, "Error: AXI interface configuration mismatch (instance %m)");
|
||||
|
||||
if (s_axi_wr.ADDR_W < ADDR_W || s_axi_rd.ADDR_W < ADDR_W)
|
||||
$fatal(0, "Error: AXI address width is insufficient (instance %m)");
|
||||
|
||||
localparam [0:0]
|
||||
READ_STATE_IDLE = 1'd0,
|
||||
READ_STATE_BURST = 1'd1;
|
||||
|
||||
logic [0:0] read_state_reg = READ_STATE_IDLE, read_state_next;
|
||||
|
||||
localparam [1:0]
|
||||
WRITE_STATE_IDLE = 2'd0,
|
||||
WRITE_STATE_BURST = 2'd1,
|
||||
WRITE_STATE_RESP = 2'd2;
|
||||
|
||||
logic [1:0] write_state_reg = WRITE_STATE_IDLE, write_state_next;
|
||||
|
||||
logic mem_wr_en;
|
||||
logic mem_rd_en;
|
||||
|
||||
logic [WR_ID_W-1:0] write_id_reg = '0, write_id_next;
|
||||
logic [ADDR_W-1:0] write_addr_reg = '0, write_addr_next;
|
||||
logic [7:0] write_count_reg = 8'd0, write_count_next;
|
||||
logic [2:0] write_size_reg = 3'd0, write_size_next;
|
||||
logic [1:0] write_burst_reg = 2'd0, write_burst_next;
|
||||
logic [RD_ID_W-1:0] read_id_reg = '0, read_id_next;
|
||||
logic [ADDR_W-1:0] read_addr_reg = '0, read_addr_next;
|
||||
logic [7:0] read_count_reg = 8'd0, read_count_next;
|
||||
logic [2:0] read_size_reg = 3'd0, read_size_next;
|
||||
logic [1:0] read_burst_reg = 2'd0, read_burst_next;
|
||||
|
||||
logic s_axi_awready_reg = 1'b0, s_axi_awready_next;
|
||||
logic s_axi_wready_reg = 1'b0, s_axi_wready_next;
|
||||
logic [WR_ID_W-1:0] s_axi_bid_reg = '0, s_axi_bid_next;
|
||||
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
|
||||
logic s_axi_arready_reg = 1'b0, s_axi_arready_next;
|
||||
logic [RD_ID_W-1:0] s_axi_rid_reg = '0, s_axi_rid_next;
|
||||
logic [DATA_W-1:0] s_axi_rdata_reg = '0, s_axi_rdata_next;
|
||||
logic s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
|
||||
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
|
||||
logic [RD_ID_W-1:0] s_axi_rid_pipe_reg = '0;
|
||||
logic [DATA_W-1:0] s_axi_rdata_pipe_reg = '0;
|
||||
logic s_axi_rlast_pipe_reg = 1'b0;
|
||||
logic s_axi_rvalid_pipe_reg = 1'b0;
|
||||
|
||||
// (* RAM_STYLE="BLOCK" *)
|
||||
logic [DATA_W-1:0] mem[2**VALID_ADDR_W];
|
||||
|
||||
wire [VALID_ADDR_W-1:0] read_addr_valid = VALID_ADDR_W'(read_addr_reg >> (ADDR_W - VALID_ADDR_W));
|
||||
wire [VALID_ADDR_W-1:0] write_addr_valid = VALID_ADDR_W'(write_addr_reg >> (ADDR_W - VALID_ADDR_W));
|
||||
|
||||
assign s_axi_wr.awready = s_axi_awready_reg;
|
||||
assign s_axi_wr.wready = s_axi_wready_reg;
|
||||
assign s_axi_wr.bid = s_axi_bid_reg;
|
||||
assign s_axi_wr.bresp = 2'b00;
|
||||
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
|
||||
|
||||
assign s_axi_rd.arready = s_axi_arready_reg;
|
||||
assign s_axi_rd.rid = PIPELINE_OUTPUT ? s_axi_rid_pipe_reg : s_axi_rid_reg;
|
||||
assign s_axi_rd.rdata = PIPELINE_OUTPUT ? s_axi_rdata_pipe_reg : s_axi_rdata_reg;
|
||||
assign s_axi_rd.rresp = 2'b00;
|
||||
assign s_axi_rd.rlast = PIPELINE_OUTPUT ? s_axi_rlast_pipe_reg : s_axi_rlast_reg;
|
||||
assign s_axi_rd.rvalid = PIPELINE_OUTPUT ? s_axi_rvalid_pipe_reg : s_axi_rvalid_reg;
|
||||
|
||||
initial begin
|
||||
// two nested loops for smaller number of iterations per loop
|
||||
// workaround for synthesizer complaints about large loop counts
|
||||
for (integer i = 0; i < 2**VALID_ADDR_W; i = i + 2**(VALID_ADDR_W/2)) begin
|
||||
for (integer j = i; j < i + 2**(VALID_ADDR_W/2); j = j + 1) begin
|
||||
mem[j] = '0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always_comb begin
|
||||
write_state_next = WRITE_STATE_IDLE;
|
||||
|
||||
mem_wr_en = 1'b0;
|
||||
|
||||
write_id_next = write_id_reg;
|
||||
write_addr_next = write_addr_reg;
|
||||
write_count_next = write_count_reg;
|
||||
write_size_next = write_size_reg;
|
||||
write_burst_next = write_burst_reg;
|
||||
|
||||
s_axi_awready_next = 1'b0;
|
||||
s_axi_wready_next = 1'b0;
|
||||
s_axi_bid_next = s_axi_bid_reg;
|
||||
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_wr.bready;
|
||||
|
||||
case (write_state_reg)
|
||||
WRITE_STATE_IDLE: begin
|
||||
s_axi_awready_next = 1'b1;
|
||||
|
||||
if (s_axi_wr.awready && s_axi_wr.awvalid) begin
|
||||
write_id_next = s_axi_wr.awid;
|
||||
write_addr_next = ADDR_W'(s_axi_wr.awaddr);
|
||||
write_count_next = s_axi_wr.awlen;
|
||||
write_size_next = s_axi_wr.awsize <= 3'($clog2(STRB_W)) ? s_axi_wr.awsize : 3'($clog2(STRB_W));
|
||||
write_burst_next = s_axi_wr.awburst;
|
||||
|
||||
s_axi_awready_next = 1'b0;
|
||||
s_axi_wready_next = 1'b1;
|
||||
write_state_next = WRITE_STATE_BURST;
|
||||
end else begin
|
||||
write_state_next = WRITE_STATE_IDLE;
|
||||
end
|
||||
end
|
||||
WRITE_STATE_BURST: begin
|
||||
s_axi_wready_next = 1'b1;
|
||||
|
||||
if (s_axi_wr.wready && s_axi_wr.wvalid) begin
|
||||
mem_wr_en = 1'b1;
|
||||
if (write_burst_reg != 2'b00) begin
|
||||
write_addr_next = write_addr_reg + (1 << write_size_reg);
|
||||
end
|
||||
write_count_next = write_count_reg - 1;
|
||||
if (write_count_reg > 0) begin
|
||||
write_state_next = WRITE_STATE_BURST;
|
||||
end else begin
|
||||
s_axi_wready_next = 1'b0;
|
||||
if (s_axi_wr.bready || !s_axi_wr.bvalid) begin
|
||||
s_axi_bid_next = write_id_reg;
|
||||
s_axi_bvalid_next = 1'b1;
|
||||
s_axi_awready_next = 1'b1;
|
||||
write_state_next = WRITE_STATE_IDLE;
|
||||
end else begin
|
||||
write_state_next = WRITE_STATE_RESP;
|
||||
end
|
||||
end
|
||||
end else begin
|
||||
write_state_next = WRITE_STATE_BURST;
|
||||
end
|
||||
end
|
||||
WRITE_STATE_RESP: begin
|
||||
if (s_axi_wr.bready || !s_axi_wr.bvalid) begin
|
||||
s_axi_bid_next = write_id_reg;
|
||||
s_axi_bvalid_next = 1'b1;
|
||||
s_axi_awready_next = 1'b1;
|
||||
write_state_next = WRITE_STATE_IDLE;
|
||||
end else begin
|
||||
write_state_next = WRITE_STATE_RESP;
|
||||
end
|
||||
end
|
||||
default: begin
|
||||
write_state_next = WRITE_STATE_IDLE;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
write_state_reg <= write_state_next;
|
||||
|
||||
write_id_reg <= write_id_next;
|
||||
write_addr_reg <= write_addr_next;
|
||||
write_count_reg <= write_count_next;
|
||||
write_size_reg <= write_size_next;
|
||||
write_burst_reg <= write_burst_next;
|
||||
|
||||
s_axi_awready_reg <= s_axi_awready_next;
|
||||
s_axi_wready_reg <= s_axi_wready_next;
|
||||
s_axi_bid_reg <= s_axi_bid_next;
|
||||
s_axi_bvalid_reg <= s_axi_bvalid_next;
|
||||
|
||||
for (integer i = 0; i < BYTE_LANES; i = i + 1) begin
|
||||
if (mem_wr_en & s_axi_wr.wstrb[i]) begin
|
||||
mem[write_addr_valid][BYTE_W*i +: BYTE_W] <= s_axi_wr.wdata[BYTE_W*i +: BYTE_W];
|
||||
end
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
write_state_reg <= WRITE_STATE_IDLE;
|
||||
|
||||
s_axi_awready_reg <= 1'b0;
|
||||
s_axi_wready_reg <= 1'b0;
|
||||
s_axi_bvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_comb begin
|
||||
read_state_next = READ_STATE_IDLE;
|
||||
|
||||
mem_rd_en = 1'b0;
|
||||
|
||||
s_axi_rid_next = s_axi_rid_reg;
|
||||
s_axi_rlast_next = s_axi_rlast_reg;
|
||||
s_axi_rvalid_next = s_axi_rvalid_reg && !(s_axi_rd.rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg));
|
||||
|
||||
read_id_next = read_id_reg;
|
||||
read_addr_next = read_addr_reg;
|
||||
read_count_next = read_count_reg;
|
||||
read_size_next = read_size_reg;
|
||||
read_burst_next = read_burst_reg;
|
||||
|
||||
s_axi_arready_next = 1'b0;
|
||||
|
||||
case (read_state_reg)
|
||||
READ_STATE_IDLE: begin
|
||||
s_axi_arready_next = 1'b1;
|
||||
|
||||
if (s_axi_rd.arready && s_axi_rd.arvalid) begin
|
||||
read_id_next = s_axi_rd.arid;
|
||||
read_addr_next = ADDR_W'(s_axi_rd.araddr);
|
||||
read_count_next = s_axi_rd.arlen;
|
||||
read_size_next = s_axi_rd.arsize <= 3'($clog2(STRB_W)) ? s_axi_rd.arsize : 3'($clog2(STRB_W));
|
||||
read_burst_next = s_axi_rd.arburst;
|
||||
|
||||
s_axi_arready_next = 1'b0;
|
||||
read_state_next = READ_STATE_BURST;
|
||||
end else begin
|
||||
read_state_next = READ_STATE_IDLE;
|
||||
end
|
||||
end
|
||||
READ_STATE_BURST: begin
|
||||
if (s_axi_rd.rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg) || !s_axi_rvalid_reg) begin
|
||||
mem_rd_en = 1'b1;
|
||||
s_axi_rvalid_next = 1'b1;
|
||||
s_axi_rid_next = read_id_reg;
|
||||
s_axi_rlast_next = read_count_reg == 0;
|
||||
if (read_burst_reg != 2'b00) begin
|
||||
read_addr_next = read_addr_reg + (1 << read_size_reg);
|
||||
end
|
||||
read_count_next = read_count_reg - 1;
|
||||
if (read_count_reg > 0) begin
|
||||
read_state_next = READ_STATE_BURST;
|
||||
end else begin
|
||||
s_axi_arready_next = 1'b1;
|
||||
read_state_next = READ_STATE_IDLE;
|
||||
end
|
||||
end else begin
|
||||
read_state_next = READ_STATE_BURST;
|
||||
end
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
read_state_reg <= read_state_next;
|
||||
|
||||
read_id_reg <= read_id_next;
|
||||
read_addr_reg <= read_addr_next;
|
||||
read_count_reg <= read_count_next;
|
||||
read_size_reg <= read_size_next;
|
||||
read_burst_reg <= read_burst_next;
|
||||
|
||||
s_axi_arready_reg <= s_axi_arready_next;
|
||||
s_axi_rid_reg <= s_axi_rid_next;
|
||||
s_axi_rlast_reg <= s_axi_rlast_next;
|
||||
s_axi_rvalid_reg <= s_axi_rvalid_next;
|
||||
|
||||
if (mem_rd_en) begin
|
||||
s_axi_rdata_reg <= mem[read_addr_valid];
|
||||
end
|
||||
|
||||
if (!s_axi_rvalid_pipe_reg || s_axi_rd.rready) begin
|
||||
s_axi_rid_pipe_reg <= s_axi_rid_reg;
|
||||
s_axi_rdata_pipe_reg <= s_axi_rdata_reg;
|
||||
s_axi_rlast_pipe_reg <= s_axi_rlast_reg;
|
||||
s_axi_rvalid_pipe_reg <= s_axi_rvalid_reg;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
read_state_reg <= READ_STATE_IDLE;
|
||||
|
||||
s_axi_arready_reg <= 1'b0;
|
||||
s_axi_rvalid_reg <= 1'b0;
|
||||
s_axi_rvalid_pipe_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
4
src/axi/rtl/taxi_axi_register.f
Normal file
4
src/axi/rtl/taxi_axi_register.f
Normal file
@@ -0,0 +1,4 @@
|
||||
taxi_axi_register.sv
|
||||
taxi_axi_register_wr.sv
|
||||
taxi_axi_register_rd.sv
|
||||
taxi_axi_if.sv
|
||||
94
src/axi/rtl/taxi_axi_register.sv
Normal file
94
src/axi/rtl/taxi_axi_register.sv
Normal file
@@ -0,0 +1,94 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 register
|
||||
*/
|
||||
module taxi_axi_register #
|
||||
(
|
||||
// AW channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter AW_REG_TYPE = 1,
|
||||
// W channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter W_REG_TYPE = 2,
|
||||
// B channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter B_REG_TYPE = 1,
|
||||
// AR channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter AR_REG_TYPE = 1,
|
||||
// R channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter R_REG_TYPE = 2
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4 slave interface
|
||||
*/
|
||||
taxi_axi_if.wr_slv s_axi_wr,
|
||||
taxi_axi_if.rd_slv s_axi_rd,
|
||||
|
||||
/*
|
||||
* AXI4 master interface
|
||||
*/
|
||||
taxi_axi_if.wr_mst m_axi_wr,
|
||||
taxi_axi_if.rd_mst m_axi_rd
|
||||
);
|
||||
|
||||
taxi_axi_register_wr #(
|
||||
.AW_REG_TYPE(AW_REG_TYPE),
|
||||
.W_REG_TYPE(W_REG_TYPE),
|
||||
.B_REG_TYPE(B_REG_TYPE)
|
||||
)
|
||||
axi_register_wr_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* AXI4 slave interface
|
||||
*/
|
||||
.s_axi_wr(s_axi_wr),
|
||||
|
||||
/*
|
||||
* AXI4 master interface
|
||||
*/
|
||||
.m_axi_wr(m_axi_wr)
|
||||
);
|
||||
|
||||
taxi_axi_register_rd #(
|
||||
.AR_REG_TYPE(AR_REG_TYPE),
|
||||
.R_REG_TYPE(R_REG_TYPE)
|
||||
)
|
||||
axi_register_rd_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* AXI4 slave interface
|
||||
*/
|
||||
.s_axi_rd(s_axi_rd),
|
||||
|
||||
/*
|
||||
* AXI4 master interface
|
||||
*/
|
||||
.m_axi_rd(m_axi_rd)
|
||||
);
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
472
src/axi/rtl/taxi_axi_register_rd.sv
Normal file
472
src/axi/rtl/taxi_axi_register_rd.sv
Normal file
@@ -0,0 +1,472 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 register (read)
|
||||
*/
|
||||
module taxi_axi_register_rd #
|
||||
(
|
||||
// AR channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter AR_REG_TYPE = 1,
|
||||
// R channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter R_REG_TYPE = 2
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4 slave interface
|
||||
*/
|
||||
taxi_axi_if.rd_slv s_axi_rd,
|
||||
|
||||
/*
|
||||
* AXI4 master interface
|
||||
*/
|
||||
taxi_axi_if.rd_mst m_axi_rd
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axi_rd.DATA_W;
|
||||
localparam ADDR_W = s_axi_rd.ADDR_W;
|
||||
localparam STRB_W = s_axi_rd.STRB_W;
|
||||
localparam ID_W = s_axi_rd.ID_W;
|
||||
localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axi_rd.ARUSER_EN;
|
||||
localparam ARUSER_W = s_axi_rd.ARUSER_W;
|
||||
localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axi_rd.RUSER_EN;
|
||||
localparam RUSER_W = s_axi_rd.RUSER_W;
|
||||
|
||||
if (m_axi_rd.DATA_W != DATA_W)
|
||||
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
|
||||
|
||||
if (m_axi_rd.STRB_W != STRB_W)
|
||||
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
|
||||
|
||||
// AR channel
|
||||
|
||||
if (AR_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axi_arready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] m_axi_arid_reg = '0;
|
||||
logic [ADDR_W-1:0] m_axi_araddr_reg = '0;
|
||||
logic [7:0] m_axi_arlen_reg = '0;
|
||||
logic [2:0] m_axi_arsize_reg = '0;
|
||||
logic [1:0] m_axi_arburst_reg = '0;
|
||||
logic m_axi_arlock_reg = '0;
|
||||
logic [3:0] m_axi_arcache_reg = '0;
|
||||
logic [2:0] m_axi_arprot_reg = '0;
|
||||
logic [3:0] m_axi_arqos_reg = '0;
|
||||
logic [3:0] m_axi_arregion_reg = '0;
|
||||
logic [ARUSER_W-1:0] m_axi_aruser_reg = '0;
|
||||
logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
|
||||
|
||||
logic [ID_W-1:0] temp_m_axi_arid_reg = '0;
|
||||
logic [ADDR_W-1:0] temp_m_axi_araddr_reg = '0;
|
||||
logic [7:0] temp_m_axi_arlen_reg = '0;
|
||||
logic [2:0] temp_m_axi_arsize_reg = '0;
|
||||
logic [1:0] temp_m_axi_arburst_reg = '0;
|
||||
logic temp_m_axi_arlock_reg = '0;
|
||||
logic [3:0] temp_m_axi_arcache_reg = '0;
|
||||
logic [2:0] temp_m_axi_arprot_reg = '0;
|
||||
logic [3:0] temp_m_axi_arqos_reg = '0;
|
||||
logic [3:0] temp_m_axi_arregion_reg = '0;
|
||||
logic [ARUSER_W-1:0] temp_m_axi_aruser_reg = '0;
|
||||
logic temp_m_axi_arvalid_reg = 1'b0, temp_m_axi_arvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_ar_input_to_output;
|
||||
logic store_axi_ar_input_to_temp;
|
||||
logic store_axi_ar_temp_to_output;
|
||||
|
||||
assign s_axi_rd.arready = s_axi_arready_reg;
|
||||
|
||||
assign m_axi_rd.arid = m_axi_arid_reg;
|
||||
assign m_axi_rd.araddr = m_axi_araddr_reg;
|
||||
assign m_axi_rd.arlen = m_axi_arlen_reg;
|
||||
assign m_axi_rd.arsize = m_axi_arsize_reg;
|
||||
assign m_axi_rd.arburst = m_axi_arburst_reg;
|
||||
assign m_axi_rd.arlock = m_axi_arlock_reg;
|
||||
assign m_axi_rd.arcache = m_axi_arcache_reg;
|
||||
assign m_axi_rd.arprot = m_axi_arprot_reg;
|
||||
assign m_axi_rd.arqos = m_axi_arqos_reg;
|
||||
assign m_axi_rd.arregion = m_axi_arregion_reg;
|
||||
assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0;
|
||||
assign m_axi_rd.arvalid = m_axi_arvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire s_axi_arready_early = m_axi_rd.arready || (!temp_m_axi_arvalid_reg && (!m_axi_arvalid_reg || !s_axi_rd.arvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axi_arvalid_next = m_axi_arvalid_reg;
|
||||
temp_m_axi_arvalid_next = temp_m_axi_arvalid_reg;
|
||||
|
||||
store_axi_ar_input_to_output = 1'b0;
|
||||
store_axi_ar_input_to_temp = 1'b0;
|
||||
store_axi_ar_temp_to_output = 1'b0;
|
||||
|
||||
if (s_axi_arready_reg) begin
|
||||
// input is ready
|
||||
if (m_axi_rd.arready || !m_axi_arvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axi_arvalid_next = s_axi_rd.arvalid;
|
||||
store_axi_ar_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axi_arvalid_next = s_axi_rd.arvalid;
|
||||
store_axi_ar_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axi_rd.arready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axi_arvalid_next = temp_m_axi_arvalid_reg;
|
||||
temp_m_axi_arvalid_next = 1'b0;
|
||||
store_axi_ar_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axi_arready_reg <= s_axi_arready_early;
|
||||
m_axi_arvalid_reg <= m_axi_arvalid_next;
|
||||
temp_m_axi_arvalid_reg <= temp_m_axi_arvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_ar_input_to_output) begin
|
||||
m_axi_arid_reg <= s_axi_rd.arid;
|
||||
m_axi_araddr_reg <= s_axi_rd.araddr;
|
||||
m_axi_arlen_reg <= s_axi_rd.arlen;
|
||||
m_axi_arsize_reg <= s_axi_rd.arsize;
|
||||
m_axi_arburst_reg <= s_axi_rd.arburst;
|
||||
m_axi_arlock_reg <= s_axi_rd.arlock;
|
||||
m_axi_arcache_reg <= s_axi_rd.arcache;
|
||||
m_axi_arprot_reg <= s_axi_rd.arprot;
|
||||
m_axi_arqos_reg <= s_axi_rd.arqos;
|
||||
m_axi_arregion_reg <= s_axi_rd.arregion;
|
||||
m_axi_aruser_reg <= s_axi_rd.aruser;
|
||||
end else if (store_axi_ar_temp_to_output) begin
|
||||
m_axi_arid_reg <= temp_m_axi_arid_reg;
|
||||
m_axi_araddr_reg <= temp_m_axi_araddr_reg;
|
||||
m_axi_arlen_reg <= temp_m_axi_arlen_reg;
|
||||
m_axi_arsize_reg <= temp_m_axi_arsize_reg;
|
||||
m_axi_arburst_reg <= temp_m_axi_arburst_reg;
|
||||
m_axi_arlock_reg <= temp_m_axi_arlock_reg;
|
||||
m_axi_arcache_reg <= temp_m_axi_arcache_reg;
|
||||
m_axi_arprot_reg <= temp_m_axi_arprot_reg;
|
||||
m_axi_arqos_reg <= temp_m_axi_arqos_reg;
|
||||
m_axi_arregion_reg <= temp_m_axi_arregion_reg;
|
||||
m_axi_aruser_reg <= temp_m_axi_aruser_reg;
|
||||
end
|
||||
|
||||
if (store_axi_ar_input_to_temp) begin
|
||||
temp_m_axi_arid_reg <= s_axi_rd.arid;
|
||||
temp_m_axi_araddr_reg <= s_axi_rd.araddr;
|
||||
temp_m_axi_arlen_reg <= s_axi_rd.arlen;
|
||||
temp_m_axi_arsize_reg <= s_axi_rd.arsize;
|
||||
temp_m_axi_arburst_reg <= s_axi_rd.arburst;
|
||||
temp_m_axi_arlock_reg <= s_axi_rd.arlock;
|
||||
temp_m_axi_arcache_reg <= s_axi_rd.arcache;
|
||||
temp_m_axi_arprot_reg <= s_axi_rd.arprot;
|
||||
temp_m_axi_arqos_reg <= s_axi_rd.arqos;
|
||||
temp_m_axi_arregion_reg <= s_axi_rd.arregion;
|
||||
temp_m_axi_aruser_reg <= s_axi_rd.aruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axi_arready_reg <= 1'b0;
|
||||
m_axi_arvalid_reg <= 1'b0;
|
||||
temp_m_axi_arvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (AR_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axi_arready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] m_axi_arid_reg = '0;
|
||||
logic [ADDR_W-1:0] m_axi_araddr_reg = '0;
|
||||
logic [7:0] m_axi_arlen_reg = '0;
|
||||
logic [2:0] m_axi_arsize_reg = '0;
|
||||
logic [1:0] m_axi_arburst_reg = '0;
|
||||
logic m_axi_arlock_reg = '0;
|
||||
logic [3:0] m_axi_arcache_reg = '0;
|
||||
logic [2:0] m_axi_arprot_reg = '0;
|
||||
logic [3:0] m_axi_arqos_reg = '0;
|
||||
logic [3:0] m_axi_arregion_reg = '0;
|
||||
logic [ARUSER_W-1:0] m_axi_aruser_reg = '0;
|
||||
logic m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_ar_input_to_output;
|
||||
|
||||
assign s_axi_rd.arready = s_axi_arready_reg;
|
||||
|
||||
assign m_axi_rd.arid = m_axi_arid_reg;
|
||||
assign m_axi_rd.araddr = m_axi_araddr_reg;
|
||||
assign m_axi_rd.arlen = m_axi_arlen_reg;
|
||||
assign m_axi_rd.arsize = m_axi_arsize_reg;
|
||||
assign m_axi_rd.arburst = m_axi_arburst_reg;
|
||||
assign m_axi_rd.arlock = m_axi_arlock_reg;
|
||||
assign m_axi_rd.arcache = m_axi_arcache_reg;
|
||||
assign m_axi_rd.arprot = m_axi_arprot_reg;
|
||||
assign m_axi_rd.arqos = m_axi_arqos_reg;
|
||||
assign m_axi_rd.arregion = m_axi_arregion_reg;
|
||||
assign m_axi_rd.aruser = ARUSER_EN ? m_axi_aruser_reg : '0;
|
||||
assign m_axi_rd.arvalid = m_axi_arvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire s_axi_arready_early = !m_axi_arvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axi_arvalid_next = m_axi_arvalid_reg;
|
||||
|
||||
store_axi_ar_input_to_output = 1'b0;
|
||||
|
||||
if (s_axi_arready_reg) begin
|
||||
m_axi_arvalid_next = s_axi_rd.arvalid;
|
||||
store_axi_ar_input_to_output = 1'b1;
|
||||
end else if (m_axi_rd.arready) begin
|
||||
m_axi_arvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axi_arready_reg <= s_axi_arready_early;
|
||||
m_axi_arvalid_reg <= m_axi_arvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_ar_input_to_output) begin
|
||||
m_axi_arid_reg <= s_axi_rd.arid;
|
||||
m_axi_araddr_reg <= s_axi_rd.araddr;
|
||||
m_axi_arlen_reg <= s_axi_rd.arlen;
|
||||
m_axi_arsize_reg <= s_axi_rd.arsize;
|
||||
m_axi_arburst_reg <= s_axi_rd.arburst;
|
||||
m_axi_arlock_reg <= s_axi_rd.arlock;
|
||||
m_axi_arcache_reg <= s_axi_rd.arcache;
|
||||
m_axi_arprot_reg <= s_axi_rd.arprot;
|
||||
m_axi_arqos_reg <= s_axi_rd.arqos;
|
||||
m_axi_arregion_reg <= s_axi_rd.arregion;
|
||||
m_axi_aruser_reg <= s_axi_rd.aruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axi_arready_reg <= 1'b0;
|
||||
m_axi_arvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass AR channel
|
||||
assign m_axi_rd.arid = s_axi_rd.arid;
|
||||
assign m_axi_rd.araddr = s_axi_rd.araddr;
|
||||
assign m_axi_rd.arlen = s_axi_rd.arlen;
|
||||
assign m_axi_rd.arsize = s_axi_rd.arsize;
|
||||
assign m_axi_rd.arburst = s_axi_rd.arburst;
|
||||
assign m_axi_rd.arlock = s_axi_rd.arlock;
|
||||
assign m_axi_rd.arcache = s_axi_rd.arcache;
|
||||
assign m_axi_rd.arprot = s_axi_rd.arprot;
|
||||
assign m_axi_rd.arqos = s_axi_rd.arqos;
|
||||
assign m_axi_rd.arregion = s_axi_rd.arregion;
|
||||
assign m_axi_rd.aruser = ARUSER_EN ? s_axi_rd.aruser : '0;
|
||||
assign m_axi_rd.arvalid = s_axi_rd.arvalid;
|
||||
assign s_axi_rd.arready = m_axi_rd.arready;
|
||||
|
||||
end
|
||||
|
||||
// R channel
|
||||
|
||||
if (R_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axi_rready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] s_axi_rid_reg = '0;
|
||||
logic [DATA_W-1:0] s_axi_rdata_reg = '0;
|
||||
logic [1:0] s_axi_rresp_reg = 2'b0;
|
||||
logic s_axi_rlast_reg = 1'b0;
|
||||
logic [RUSER_W-1:0] s_axi_ruser_reg = '0;
|
||||
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
|
||||
|
||||
logic [ID_W-1:0] temp_s_axi_rid_reg = '0;
|
||||
logic [DATA_W-1:0] temp_s_axi_rdata_reg = '0;
|
||||
logic [1:0] temp_s_axi_rresp_reg = 2'b0;
|
||||
logic temp_s_axi_rlast_reg = 1'b0;
|
||||
logic [RUSER_W-1:0] temp_s_axi_ruser_reg = '0;
|
||||
logic temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_r_input_to_output;
|
||||
logic store_axi_r_input_to_temp;
|
||||
logic store_axi_r_temp_to_output;
|
||||
|
||||
assign m_axi_rd.rready = m_axi_rready_reg;
|
||||
|
||||
assign s_axi_rd.rid = s_axi_rid_reg;
|
||||
assign s_axi_rd.rdata = s_axi_rdata_reg;
|
||||
assign s_axi_rd.rresp = s_axi_rresp_reg;
|
||||
assign s_axi_rd.rlast = s_axi_rlast_reg;
|
||||
assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0;
|
||||
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire m_axi_rready_early = s_axi_rd.rready || (!temp_s_axi_rvalid_reg && (!s_axi_rvalid_reg || !m_axi_rd.rvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axi_rvalid_next = s_axi_rvalid_reg;
|
||||
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
|
||||
|
||||
store_axi_r_input_to_output = 1'b0;
|
||||
store_axi_r_input_to_temp = 1'b0;
|
||||
store_axi_r_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axi_rready_reg) begin
|
||||
// input is ready
|
||||
if (s_axi_rd.rready || !s_axi_rvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
s_axi_rvalid_next = m_axi_rd.rvalid;
|
||||
store_axi_r_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_s_axi_rvalid_next = m_axi_rd.rvalid;
|
||||
store_axi_r_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (s_axi_rd.rready) begin
|
||||
// input is not ready, but output is ready
|
||||
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
|
||||
temp_s_axi_rvalid_next = 1'b0;
|
||||
store_axi_r_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axi_rready_reg <= m_axi_rready_early;
|
||||
s_axi_rvalid_reg <= s_axi_rvalid_next;
|
||||
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_r_input_to_output) begin
|
||||
s_axi_rid_reg <= m_axi_rd.rid;
|
||||
s_axi_rdata_reg <= m_axi_rd.rdata;
|
||||
s_axi_rresp_reg <= m_axi_rd.rresp;
|
||||
s_axi_rlast_reg <= m_axi_rd.rlast;
|
||||
s_axi_ruser_reg <= m_axi_rd.ruser;
|
||||
end else if (store_axi_r_temp_to_output) begin
|
||||
s_axi_rid_reg <= temp_s_axi_rid_reg;
|
||||
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
|
||||
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
|
||||
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
|
||||
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
|
||||
end
|
||||
|
||||
if (store_axi_r_input_to_temp) begin
|
||||
temp_s_axi_rid_reg <= m_axi_rd.rid;
|
||||
temp_s_axi_rdata_reg <= m_axi_rd.rdata;
|
||||
temp_s_axi_rresp_reg <= m_axi_rd.rresp;
|
||||
temp_s_axi_rlast_reg <= m_axi_rd.rlast;
|
||||
temp_s_axi_ruser_reg <= m_axi_rd.ruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axi_rready_reg <= 1'b0;
|
||||
s_axi_rvalid_reg <= 1'b0;
|
||||
temp_s_axi_rvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (R_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axi_rready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] s_axi_rid_reg = '0;
|
||||
logic [DATA_W-1:0] s_axi_rdata_reg = '0;
|
||||
logic [1:0] s_axi_rresp_reg = 2'b0;
|
||||
logic s_axi_rlast_reg = 1'b0;
|
||||
logic [RUSER_W-1:0] s_axi_ruser_reg = '0;
|
||||
logic s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_r_input_to_output;
|
||||
|
||||
assign m_axi_rd.rready = m_axi_rready_reg;
|
||||
|
||||
assign s_axi_rd.rid = s_axi_rid_reg;
|
||||
assign s_axi_rd.rdata = s_axi_rdata_reg;
|
||||
assign s_axi_rd.rresp = s_axi_rresp_reg;
|
||||
assign s_axi_rd.rlast = s_axi_rlast_reg;
|
||||
assign s_axi_rd.ruser = RUSER_EN ? s_axi_ruser_reg : '0;
|
||||
assign s_axi_rd.rvalid = s_axi_rvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire m_axi_rready_early = !s_axi_rvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axi_rvalid_next = s_axi_rvalid_reg;
|
||||
|
||||
store_axi_r_input_to_output = 1'b0;
|
||||
|
||||
if (m_axi_rready_reg) begin
|
||||
s_axi_rvalid_next = m_axi_rd.rvalid;
|
||||
store_axi_r_input_to_output = 1'b1;
|
||||
end else if (s_axi_rd.rready) begin
|
||||
s_axi_rvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axi_rready_reg <= m_axi_rready_early;
|
||||
s_axi_rvalid_reg <= s_axi_rvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_r_input_to_output) begin
|
||||
s_axi_rid_reg <= m_axi_rd.rid;
|
||||
s_axi_rdata_reg <= m_axi_rd.rdata;
|
||||
s_axi_rresp_reg <= m_axi_rd.rresp;
|
||||
s_axi_rlast_reg <= m_axi_rd.rlast;
|
||||
s_axi_ruser_reg <= m_axi_rd.ruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axi_rready_reg <= 1'b0;
|
||||
s_axi_rvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass R channel
|
||||
assign s_axi_rd.rid = m_axi_rd.rid;
|
||||
assign s_axi_rd.rdata = m_axi_rd.rdata;
|
||||
assign s_axi_rd.rresp = m_axi_rd.rresp;
|
||||
assign s_axi_rd.rlast = m_axi_rd.rlast;
|
||||
assign s_axi_rd.ruser = RUSER_EN ? m_axi_rd.ruser : '0;
|
||||
assign s_axi_rd.rvalid = m_axi_rd.rvalid;
|
||||
assign m_axi_rd.rready = s_axi_rd.rready;
|
||||
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
623
src/axi/rtl/taxi_axi_register_wr.sv
Normal file
623
src/axi/rtl/taxi_axi_register_wr.sv
Normal file
@@ -0,0 +1,623 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 register (write)
|
||||
*/
|
||||
module taxi_axi_register_wr #
|
||||
(
|
||||
// AW channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter AW_REG_TYPE = 1,
|
||||
// W channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter W_REG_TYPE = 2,
|
||||
// B channel register type
|
||||
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
|
||||
parameter B_REG_TYPE = 1
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4 slave interface
|
||||
*/
|
||||
taxi_axi_if.wr_slv s_axi_wr,
|
||||
|
||||
/*
|
||||
* AXI4 master interface
|
||||
*/
|
||||
taxi_axi_if.wr_mst m_axi_wr
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axi_wr.DATA_W;
|
||||
localparam ADDR_W = s_axi_wr.ADDR_W;
|
||||
localparam STRB_W = s_axi_wr.STRB_W;
|
||||
localparam ID_W = s_axi_wr.ID_W;
|
||||
localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN;
|
||||
localparam AWUSER_W = s_axi_wr.AWUSER_W;
|
||||
localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN;
|
||||
localparam WUSER_W = s_axi_wr.WUSER_W;
|
||||
localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN;
|
||||
localparam BUSER_W = s_axi_wr.BUSER_W;
|
||||
|
||||
if (m_axi_wr.DATA_W != DATA_W)
|
||||
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
|
||||
|
||||
if (m_axi_wr.STRB_W != STRB_W)
|
||||
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
|
||||
|
||||
// AW channel
|
||||
|
||||
if (AW_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axi_awready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] m_axi_awid_reg = '0;
|
||||
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0;
|
||||
logic [7:0] m_axi_awlen_reg = '0;
|
||||
logic [2:0] m_axi_awsize_reg = '0;
|
||||
logic [1:0] m_axi_awburst_reg = '0;
|
||||
logic m_axi_awlock_reg = '0;
|
||||
logic [3:0] m_axi_awcache_reg = '0;
|
||||
logic [2:0] m_axi_awprot_reg = '0;
|
||||
logic [3:0] m_axi_awqos_reg = '0;
|
||||
logic [3:0] m_axi_awregion_reg = '0;
|
||||
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0;
|
||||
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
|
||||
|
||||
logic [ID_W-1:0] temp_m_axi_awid_reg = '0;
|
||||
logic [ADDR_W-1:0] temp_m_axi_awaddr_reg = '0;
|
||||
logic [7:0] temp_m_axi_awlen_reg = '0;
|
||||
logic [2:0] temp_m_axi_awsize_reg = '0;
|
||||
logic [1:0] temp_m_axi_awburst_reg = '0;
|
||||
logic temp_m_axi_awlock_reg = '0;
|
||||
logic [3:0] temp_m_axi_awcache_reg = '0;
|
||||
logic [2:0] temp_m_axi_awprot_reg = '0;
|
||||
logic [3:0] temp_m_axi_awqos_reg = '0;
|
||||
logic [3:0] temp_m_axi_awregion_reg = '0;
|
||||
logic [AWUSER_W-1:0] temp_m_axi_awuser_reg = '0;
|
||||
logic temp_m_axi_awvalid_reg = 1'b0, temp_m_axi_awvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_aw_input_to_output;
|
||||
logic store_axi_aw_input_to_temp;
|
||||
logic store_axi_aw_temp_to_output;
|
||||
|
||||
assign s_axi_wr.awready = s_axi_awready_reg;
|
||||
|
||||
assign m_axi_wr.awid = m_axi_awid_reg;
|
||||
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
|
||||
assign m_axi_wr.awlen = m_axi_awlen_reg;
|
||||
assign m_axi_wr.awsize = m_axi_awsize_reg;
|
||||
assign m_axi_wr.awburst = m_axi_awburst_reg;
|
||||
assign m_axi_wr.awlock = m_axi_awlock_reg;
|
||||
assign m_axi_wr.awcache = m_axi_awcache_reg;
|
||||
assign m_axi_wr.awprot = m_axi_awprot_reg;
|
||||
assign m_axi_wr.awqos = m_axi_awqos_reg;
|
||||
assign m_axi_wr.awregion = m_axi_awregion_reg;
|
||||
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
|
||||
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire s_axi_awready_early = m_axi_wr.awready || (!temp_m_axi_awvalid_reg && (!m_axi_awvalid_reg || !s_axi_wr.awvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axi_awvalid_next = m_axi_awvalid_reg;
|
||||
temp_m_axi_awvalid_next = temp_m_axi_awvalid_reg;
|
||||
|
||||
store_axi_aw_input_to_output = 1'b0;
|
||||
store_axi_aw_input_to_temp = 1'b0;
|
||||
store_axi_aw_temp_to_output = 1'b0;
|
||||
|
||||
if (s_axi_awready_reg) begin
|
||||
// input is ready
|
||||
if (m_axi_wr.awready || !m_axi_awvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axi_awvalid_next = s_axi_wr.awvalid;
|
||||
store_axi_aw_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axi_awvalid_next = s_axi_wr.awvalid;
|
||||
store_axi_aw_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axi_wr.awready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axi_awvalid_next = temp_m_axi_awvalid_reg;
|
||||
temp_m_axi_awvalid_next = 1'b0;
|
||||
store_axi_aw_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axi_awready_reg <= s_axi_awready_early;
|
||||
m_axi_awvalid_reg <= m_axi_awvalid_next;
|
||||
temp_m_axi_awvalid_reg <= temp_m_axi_awvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_aw_input_to_output) begin
|
||||
m_axi_awid_reg <= s_axi_wr.awid;
|
||||
m_axi_awaddr_reg <= s_axi_wr.awaddr;
|
||||
m_axi_awlen_reg <= s_axi_wr.awlen;
|
||||
m_axi_awsize_reg <= s_axi_wr.awsize;
|
||||
m_axi_awburst_reg <= s_axi_wr.awburst;
|
||||
m_axi_awlock_reg <= s_axi_wr.awlock;
|
||||
m_axi_awcache_reg <= s_axi_wr.awcache;
|
||||
m_axi_awprot_reg <= s_axi_wr.awprot;
|
||||
m_axi_awqos_reg <= s_axi_wr.awqos;
|
||||
m_axi_awregion_reg <= s_axi_wr.awregion;
|
||||
m_axi_awuser_reg <= s_axi_wr.awuser;
|
||||
end else if (store_axi_aw_temp_to_output) begin
|
||||
m_axi_awid_reg <= temp_m_axi_awid_reg;
|
||||
m_axi_awaddr_reg <= temp_m_axi_awaddr_reg;
|
||||
m_axi_awlen_reg <= temp_m_axi_awlen_reg;
|
||||
m_axi_awsize_reg <= temp_m_axi_awsize_reg;
|
||||
m_axi_awburst_reg <= temp_m_axi_awburst_reg;
|
||||
m_axi_awlock_reg <= temp_m_axi_awlock_reg;
|
||||
m_axi_awcache_reg <= temp_m_axi_awcache_reg;
|
||||
m_axi_awprot_reg <= temp_m_axi_awprot_reg;
|
||||
m_axi_awqos_reg <= temp_m_axi_awqos_reg;
|
||||
m_axi_awregion_reg <= temp_m_axi_awregion_reg;
|
||||
m_axi_awuser_reg <= temp_m_axi_awuser_reg;
|
||||
end
|
||||
|
||||
if (store_axi_aw_input_to_temp) begin
|
||||
temp_m_axi_awid_reg <= s_axi_wr.awid;
|
||||
temp_m_axi_awaddr_reg <= s_axi_wr.awaddr;
|
||||
temp_m_axi_awlen_reg <= s_axi_wr.awlen;
|
||||
temp_m_axi_awsize_reg <= s_axi_wr.awsize;
|
||||
temp_m_axi_awburst_reg <= s_axi_wr.awburst;
|
||||
temp_m_axi_awlock_reg <= s_axi_wr.awlock;
|
||||
temp_m_axi_awcache_reg <= s_axi_wr.awcache;
|
||||
temp_m_axi_awprot_reg <= s_axi_wr.awprot;
|
||||
temp_m_axi_awqos_reg <= s_axi_wr.awqos;
|
||||
temp_m_axi_awregion_reg <= s_axi_wr.awregion;
|
||||
temp_m_axi_awuser_reg <= s_axi_wr.awuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axi_awready_reg <= 1'b0;
|
||||
m_axi_awvalid_reg <= 1'b0;
|
||||
temp_m_axi_awvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (AW_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axi_awready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] m_axi_awid_reg = '0;
|
||||
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0;
|
||||
logic [7:0] m_axi_awlen_reg = '0;
|
||||
logic [2:0] m_axi_awsize_reg = '0;
|
||||
logic [1:0] m_axi_awburst_reg = '0;
|
||||
logic m_axi_awlock_reg = '0;
|
||||
logic [3:0] m_axi_awcache_reg = '0;
|
||||
logic [2:0] m_axi_awprot_reg = '0;
|
||||
logic [3:0] m_axi_awqos_reg = '0;
|
||||
logic [3:0] m_axi_awregion_reg = '0;
|
||||
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0;
|
||||
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_aw_input_to_output;
|
||||
|
||||
assign s_axi_wr.awready = s_axi_awready_reg;
|
||||
|
||||
assign m_axi_wr.awid = m_axi_awid_reg;
|
||||
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
|
||||
assign m_axi_wr.awlen = m_axi_awlen_reg;
|
||||
assign m_axi_wr.awsize = m_axi_awsize_reg;
|
||||
assign m_axi_wr.awburst = m_axi_awburst_reg;
|
||||
assign m_axi_wr.awlock = m_axi_awlock_reg;
|
||||
assign m_axi_wr.awcache = m_axi_awcache_reg;
|
||||
assign m_axi_wr.awprot = m_axi_awprot_reg;
|
||||
assign m_axi_wr.awqos = m_axi_awqos_reg;
|
||||
assign m_axi_wr.awregion = m_axi_awregion_reg;
|
||||
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
|
||||
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire s_axi_awready_eawly = !m_axi_awvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axi_awvalid_next = m_axi_awvalid_reg;
|
||||
|
||||
store_axi_aw_input_to_output = 1'b0;
|
||||
|
||||
if (s_axi_awready_reg) begin
|
||||
m_axi_awvalid_next = s_axi_wr.awvalid;
|
||||
store_axi_aw_input_to_output = 1'b1;
|
||||
end else if (m_axi_wr.awready) begin
|
||||
m_axi_awvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axi_awready_reg <= s_axi_awready_eawly;
|
||||
m_axi_awvalid_reg <= m_axi_awvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_aw_input_to_output) begin
|
||||
m_axi_awid_reg <= s_axi_wr.awid;
|
||||
m_axi_awaddr_reg <= s_axi_wr.awaddr;
|
||||
m_axi_awlen_reg <= s_axi_wr.awlen;
|
||||
m_axi_awsize_reg <= s_axi_wr.awsize;
|
||||
m_axi_awburst_reg <= s_axi_wr.awburst;
|
||||
m_axi_awlock_reg <= s_axi_wr.awlock;
|
||||
m_axi_awcache_reg <= s_axi_wr.awcache;
|
||||
m_axi_awprot_reg <= s_axi_wr.awprot;
|
||||
m_axi_awqos_reg <= s_axi_wr.awqos;
|
||||
m_axi_awregion_reg <= s_axi_wr.awregion;
|
||||
m_axi_awuser_reg <= s_axi_wr.awuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axi_awready_reg <= 1'b0;
|
||||
m_axi_awvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass AW channel
|
||||
assign m_axi_wr.awid = s_axi_wr.awid;
|
||||
assign m_axi_wr.awaddr = s_axi_wr.awaddr;
|
||||
assign m_axi_wr.awlen = s_axi_wr.awlen;
|
||||
assign m_axi_wr.awsize = s_axi_wr.awsize;
|
||||
assign m_axi_wr.awburst = s_axi_wr.awburst;
|
||||
assign m_axi_wr.awlock = s_axi_wr.awlock;
|
||||
assign m_axi_wr.awcache = s_axi_wr.awcache;
|
||||
assign m_axi_wr.awprot = s_axi_wr.awprot;
|
||||
assign m_axi_wr.awqos = s_axi_wr.awqos;
|
||||
assign m_axi_wr.awregion = s_axi_wr.awregion;
|
||||
assign m_axi_wr.awuser = AWUSER_EN ? s_axi_wr.awuser : '0;
|
||||
assign m_axi_wr.awvalid = s_axi_wr.awvalid;
|
||||
assign s_axi_wr.awready = m_axi_wr.awready;
|
||||
|
||||
end
|
||||
|
||||
// W channel
|
||||
|
||||
if (W_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axi_wready_reg = 1'b0;
|
||||
|
||||
logic [DATA_W-1:0] m_axi_wdata_reg = '0;
|
||||
logic [STRB_W-1:0] m_axi_wstrb_reg = '0;
|
||||
logic m_axi_wlast_reg = 1'b0;
|
||||
logic [WUSER_W-1:0] m_axi_wuser_reg = '0;
|
||||
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
|
||||
|
||||
logic [DATA_W-1:0] temp_m_axi_wdata_reg = '0;
|
||||
logic [STRB_W-1:0] temp_m_axi_wstrb_reg = '0;
|
||||
logic temp_m_axi_wlast_reg = 1'b0;
|
||||
logic [WUSER_W-1:0] temp_m_axi_wuser_reg = '0;
|
||||
logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_w_input_to_output;
|
||||
logic store_axi_w_input_to_temp;
|
||||
logic store_axi_w_temp_to_output;
|
||||
|
||||
assign s_axi_wr.wready = s_axi_wready_reg;
|
||||
|
||||
assign m_axi_wr.wdata = m_axi_wdata_reg;
|
||||
assign m_axi_wr.wstrb = m_axi_wstrb_reg;
|
||||
assign m_axi_wr.wlast = m_axi_wlast_reg;
|
||||
assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0;
|
||||
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire s_axi_wready_early = m_axi_wr.wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !s_axi_wr.wvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axi_wvalid_next = m_axi_wvalid_reg;
|
||||
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
|
||||
|
||||
store_axi_w_input_to_output = 1'b0;
|
||||
store_axi_w_input_to_temp = 1'b0;
|
||||
store_axi_w_temp_to_output = 1'b0;
|
||||
|
||||
if (s_axi_wready_reg) begin
|
||||
// input is ready
|
||||
if (m_axi_wr.wready || !m_axi_wvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axi_wvalid_next = s_axi_wr.wvalid;
|
||||
store_axi_w_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axi_wvalid_next = s_axi_wr.wvalid;
|
||||
store_axi_w_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axi_wr.wready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
|
||||
temp_m_axi_wvalid_next = 1'b0;
|
||||
store_axi_w_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axi_wready_reg <= s_axi_wready_early;
|
||||
m_axi_wvalid_reg <= m_axi_wvalid_next;
|
||||
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_w_input_to_output) begin
|
||||
m_axi_wdata_reg <= s_axi_wr.wdata;
|
||||
m_axi_wstrb_reg <= s_axi_wr.wstrb;
|
||||
m_axi_wlast_reg <= s_axi_wr.wlast;
|
||||
m_axi_wuser_reg <= s_axi_wr.wuser;
|
||||
end else if (store_axi_w_temp_to_output) begin
|
||||
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
|
||||
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
|
||||
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
|
||||
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
|
||||
end
|
||||
|
||||
if (store_axi_w_input_to_temp) begin
|
||||
temp_m_axi_wdata_reg <= s_axi_wr.wdata;
|
||||
temp_m_axi_wstrb_reg <= s_axi_wr.wstrb;
|
||||
temp_m_axi_wlast_reg <= s_axi_wr.wlast;
|
||||
temp_m_axi_wuser_reg <= s_axi_wr.wuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axi_wready_reg <= 1'b0;
|
||||
m_axi_wvalid_reg <= 1'b0;
|
||||
temp_m_axi_wvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (W_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axi_wready_reg = 1'b0;
|
||||
|
||||
logic [DATA_W-1:0] m_axi_wdata_reg = '0;
|
||||
logic [STRB_W-1:0] m_axi_wstrb_reg = '0;
|
||||
logic m_axi_wlast_reg = 1'b0;
|
||||
logic [WUSER_W-1:0] m_axi_wuser_reg = '0;
|
||||
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_w_input_to_output;
|
||||
|
||||
assign s_axi_wr.wready = s_axi_wready_reg;
|
||||
|
||||
assign m_axi_wr.wdata = m_axi_wdata_reg;
|
||||
assign m_axi_wr.wstrb = m_axi_wstrb_reg;
|
||||
assign m_axi_wr.wlast = m_axi_wlast_reg;
|
||||
assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0;
|
||||
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire s_axi_wready_ewly = !m_axi_wvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axi_wvalid_next = m_axi_wvalid_reg;
|
||||
|
||||
store_axi_w_input_to_output = 1'b0;
|
||||
|
||||
if (s_axi_wready_reg) begin
|
||||
m_axi_wvalid_next = s_axi_wr.wvalid;
|
||||
store_axi_w_input_to_output = 1'b1;
|
||||
end else if (m_axi_wr.wready) begin
|
||||
m_axi_wvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axi_wready_reg <= s_axi_wready_ewly;
|
||||
m_axi_wvalid_reg <= m_axi_wvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_w_input_to_output) begin
|
||||
m_axi_wdata_reg <= s_axi_wr.wdata;
|
||||
m_axi_wstrb_reg <= s_axi_wr.wstrb;
|
||||
m_axi_wlast_reg <= s_axi_wr.wlast;
|
||||
m_axi_wuser_reg <= s_axi_wr.wuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axi_wready_reg <= 1'b0;
|
||||
m_axi_wvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass W channel
|
||||
assign m_axi_wr.wdata = s_axi_wr.wdata;
|
||||
assign m_axi_wr.wstrb = s_axi_wr.wstrb;
|
||||
assign m_axi_wr.wlast = s_axi_wr.wlast;
|
||||
assign m_axi_wr.wuser = WUSER_EN ? s_axi_wr.wuser : '0;
|
||||
assign m_axi_wr.wvalid = s_axi_wr.wvalid;
|
||||
assign s_axi_wr.wready = m_axi_wr.wready;
|
||||
|
||||
end
|
||||
|
||||
// B channel
|
||||
|
||||
if (B_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axi_bready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] s_axi_bid_reg = '0;
|
||||
logic [1:0] s_axi_bresp_reg = 2'b0;
|
||||
logic [BUSER_W-1:0] s_axi_buser_reg = '0;
|
||||
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
|
||||
|
||||
logic [ID_W-1:0] temp_s_axi_bid_reg = '0;
|
||||
logic [1:0] temp_s_axi_bresp_reg = 2'b0;
|
||||
logic [BUSER_W-1:0] temp_s_axi_buser_reg = '0;
|
||||
logic temp_s_axi_bvalid_reg = 1'b0, temp_s_axi_bvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_b_input_to_output;
|
||||
logic store_axi_b_input_to_temp;
|
||||
logic store_axi_b_temp_to_output;
|
||||
|
||||
assign m_axi_wr.bready = m_axi_bready_reg;
|
||||
|
||||
assign s_axi_wr.bid = s_axi_bid_reg;
|
||||
assign s_axi_wr.bresp = s_axi_bresp_reg;
|
||||
assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0;
|
||||
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire m_axi_bready_early = s_axi_wr.bready || (!temp_s_axi_bvalid_reg && (!s_axi_bvalid_reg || !m_axi_wr.bvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axi_bvalid_next = s_axi_bvalid_reg;
|
||||
temp_s_axi_bvalid_next = temp_s_axi_bvalid_reg;
|
||||
|
||||
store_axi_b_input_to_output = 1'b0;
|
||||
store_axi_b_input_to_temp = 1'b0;
|
||||
store_axi_b_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axi_bready_reg) begin
|
||||
// input is ready
|
||||
if (s_axi_wr.bready || !s_axi_bvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
s_axi_bvalid_next = m_axi_wr.bvalid;
|
||||
store_axi_b_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_s_axi_bvalid_next = m_axi_wr.bvalid;
|
||||
store_axi_b_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (s_axi_wr.bready) begin
|
||||
// input is not ready, but output is ready
|
||||
s_axi_bvalid_next = temp_s_axi_bvalid_reg;
|
||||
temp_s_axi_bvalid_next = 1'b0;
|
||||
store_axi_b_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axi_bready_reg <= m_axi_bready_early;
|
||||
s_axi_bvalid_reg <= s_axi_bvalid_next;
|
||||
temp_s_axi_bvalid_reg <= temp_s_axi_bvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_b_input_to_output) begin
|
||||
s_axi_bid_reg <= m_axi_wr.bid;
|
||||
s_axi_bresp_reg <= m_axi_wr.bresp;
|
||||
s_axi_buser_reg <= m_axi_wr.buser;
|
||||
end else if (store_axi_b_temp_to_output) begin
|
||||
s_axi_bid_reg <= temp_s_axi_bid_reg;
|
||||
s_axi_bresp_reg <= temp_s_axi_bresp_reg;
|
||||
s_axi_buser_reg <= temp_s_axi_buser_reg;
|
||||
end
|
||||
|
||||
if (store_axi_b_input_to_temp) begin
|
||||
temp_s_axi_bid_reg <= m_axi_wr.bid;
|
||||
temp_s_axi_bresp_reg <= m_axi_wr.bresp;
|
||||
temp_s_axi_buser_reg <= m_axi_wr.buser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axi_bready_reg <= 1'b0;
|
||||
s_axi_bvalid_reg <= 1'b0;
|
||||
temp_s_axi_bvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (B_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axi_bready_reg = 1'b0;
|
||||
|
||||
logic [ID_W-1:0] s_axi_bid_reg = '0;
|
||||
logic [1:0] s_axi_bresp_reg = 2'b0;
|
||||
logic [BUSER_W-1:0] s_axi_buser_reg = '0;
|
||||
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axi_b_input_to_output;
|
||||
|
||||
assign m_axi_wr.bready = m_axi_bready_reg;
|
||||
|
||||
assign s_axi_wr.bid = s_axi_bid_reg;
|
||||
assign s_axi_wr.bresp = s_axi_bresp_reg;
|
||||
assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0;
|
||||
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire m_axi_bready_early = !s_axi_bvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axi_bvalid_next = s_axi_bvalid_reg;
|
||||
|
||||
store_axi_b_input_to_output = 1'b0;
|
||||
|
||||
if (m_axi_bready_reg) begin
|
||||
s_axi_bvalid_next = m_axi_wr.bvalid;
|
||||
store_axi_b_input_to_output = 1'b1;
|
||||
end else if (s_axi_wr.bready) begin
|
||||
s_axi_bvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axi_bready_reg <= m_axi_bready_early;
|
||||
s_axi_bvalid_reg <= s_axi_bvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axi_b_input_to_output) begin
|
||||
s_axi_bid_reg <= m_axi_wr.bid;
|
||||
s_axi_bresp_reg <= m_axi_wr.bresp;
|
||||
s_axi_buser_reg <= m_axi_wr.buser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axi_bready_reg <= 1'b0;
|
||||
s_axi_bvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass B channel
|
||||
assign s_axi_wr.bid = m_axi_wr.bid;
|
||||
assign s_axi_wr.bresp = m_axi_wr.bresp;
|
||||
assign s_axi_wr.buser = BUSER_EN ? m_axi_wr.buser : '0;
|
||||
assign s_axi_wr.bvalid = m_axi_wr.bvalid;
|
||||
assign m_axi_wr.bready = s_axi_wr.bready;
|
||||
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
284
src/axi/rtl/taxi_axil_dp_ram.sv
Normal file
284
src/axi/rtl/taxi_axil_dp_ram.sv
Normal file
@@ -0,0 +1,284 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4-Lite dual-port RAM
|
||||
*/
|
||||
module taxi_axil_dp_ram #
|
||||
(
|
||||
// Width of address bus in bits
|
||||
parameter ADDR_W = 16,
|
||||
// Extra pipeline register on output
|
||||
parameter logic PIPELINE_OUTPUT = 1'b0
|
||||
)
|
||||
(
|
||||
/*
|
||||
* Port A
|
||||
*/
|
||||
input wire logic a_clk,
|
||||
input wire logic a_rst,
|
||||
taxi_axil_if.wr_slv s_axil_wr_a,
|
||||
taxi_axil_if.rd_slv s_axil_rd_a,
|
||||
|
||||
/*
|
||||
* Port B
|
||||
*/
|
||||
input wire logic b_clk,
|
||||
input wire logic b_rst,
|
||||
taxi_axil_if.wr_slv s_axil_wr_b,
|
||||
taxi_axil_if.rd_slv s_axil_rd_b
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axil_wr_a.DATA_W;
|
||||
localparam STRB_W = s_axil_wr_a.STRB_W;
|
||||
|
||||
localparam VALID_ADDR_W = ADDR_W - $clog2(STRB_W);
|
||||
localparam BYTE_LANES = STRB_W;
|
||||
localparam BYTE_W = DATA_W/BYTE_LANES;
|
||||
|
||||
// check configuration
|
||||
if (BYTE_W * STRB_W != DATA_W)
|
||||
$fatal(0, "Error: AXI data width not evenly divisible (instance %m)");
|
||||
|
||||
if (2**$clog2(BYTE_LANES) != BYTE_LANES)
|
||||
$fatal(0, "Error: AXI word width must be even power of two (instance %m)");
|
||||
|
||||
if (s_axil_wr_a.DATA_W != s_axil_rd_a.DATA_W || s_axil_wr_b.DATA_W != s_axil_rd_b.DATA_W || s_axil_wr_a.DATA_W != s_axil_wr_b.DATA_W)
|
||||
$fatal(0, "Error: AXI interface configuration mismatch (instance %m)");
|
||||
|
||||
if (s_axil_wr_a.ADDR_W < ADDR_W || s_axil_wr_a.ADDR_W < ADDR_W || s_axil_rd_b.ADDR_W < ADDR_W || s_axil_rd_b.ADDR_W < ADDR_W)
|
||||
$fatal(0, "Error: AXI address width is insufficient (instance %m)");
|
||||
|
||||
logic read_eligible_a;
|
||||
logic write_eligible_a;
|
||||
|
||||
logic read_eligible_b;
|
||||
logic write_eligible_b;
|
||||
|
||||
logic mem_wr_en_a;
|
||||
logic mem_rd_en_a;
|
||||
|
||||
logic mem_wr_en_b;
|
||||
logic mem_rd_en_b;
|
||||
|
||||
logic last_read_a_reg = 1'b0, last_read_a_next;
|
||||
logic last_read_b_reg = 1'b0, last_read_b_next;
|
||||
|
||||
logic s_axil_a_awready_reg = 1'b0, s_axil_a_awready_next;
|
||||
logic s_axil_a_wready_reg = 1'b0, s_axil_a_wready_next;
|
||||
logic s_axil_a_bvalid_reg = 1'b0, s_axil_a_bvalid_next;
|
||||
logic s_axil_a_arready_reg = 1'b0, s_axil_a_arready_next;
|
||||
logic [DATA_W-1:0] s_axil_a_rdata_reg = '0, s_axil_a_rdata_next;
|
||||
logic s_axil_a_rvalid_reg = 1'b0, s_axil_a_rvalid_next;
|
||||
logic [DATA_W-1:0] s_axil_a_rdata_pipe_reg = '0;
|
||||
logic s_axil_a_rvalid_pipe_reg = 1'b0;
|
||||
|
||||
logic s_axil_b_awready_reg = 1'b0, s_axil_b_awready_next;
|
||||
logic s_axil_b_wready_reg = 1'b0, s_axil_b_wready_next;
|
||||
logic s_axil_b_bvalid_reg = 1'b0, s_axil_b_bvalid_next;
|
||||
logic s_axil_b_arready_reg = 1'b0, s_axil_b_arready_next;
|
||||
logic [DATA_W-1:0] s_axil_b_rdata_reg = '0, s_axil_b_rdata_next;
|
||||
logic s_axil_b_rvalid_reg = 1'b0, s_axil_b_rvalid_next;
|
||||
logic [DATA_W-1:0] s_axil_b_rdata_pipe_reg = '0;
|
||||
logic s_axil_b_rvalid_pipe_reg = 1'b0;
|
||||
|
||||
// verilator lint_off MULTIDRIVEN
|
||||
// (* RAM_STYLE="BLOCK" *)
|
||||
logic [DATA_W-1:0] mem[2**VALID_ADDR_W];
|
||||
// verilator lint_on MULTIDRIVEN
|
||||
|
||||
wire [VALID_ADDR_W-1:0] s_axil_a_awaddr_valid = VALID_ADDR_W'(s_axil_wr_a.awaddr >> (ADDR_W - VALID_ADDR_W));
|
||||
wire [VALID_ADDR_W-1:0] s_axil_a_araddr_valid = VALID_ADDR_W'(s_axil_rd_a.araddr >> (ADDR_W - VALID_ADDR_W));
|
||||
|
||||
wire [VALID_ADDR_W-1:0] s_axil_b_awaddr_valid = VALID_ADDR_W'(s_axil_wr_b.awaddr >> (ADDR_W - VALID_ADDR_W));
|
||||
wire [VALID_ADDR_W-1:0] s_axil_b_araddr_valid = VALID_ADDR_W'(s_axil_rd_b.araddr >> (ADDR_W - VALID_ADDR_W));
|
||||
|
||||
assign s_axil_wr_a.awready = s_axil_a_awready_reg;
|
||||
assign s_axil_wr_a.wready = s_axil_a_wready_reg;
|
||||
assign s_axil_wr_a.bresp = 2'b00;
|
||||
assign s_axil_wr_a.bvalid = s_axil_a_bvalid_reg;
|
||||
|
||||
assign s_axil_rd_a.arready = s_axil_a_arready_reg;
|
||||
assign s_axil_rd_a.rdata = PIPELINE_OUTPUT ? s_axil_a_rdata_pipe_reg : s_axil_a_rdata_reg;
|
||||
assign s_axil_rd_a.rresp = 2'b00;
|
||||
assign s_axil_rd_a.rvalid = PIPELINE_OUTPUT ? s_axil_a_rvalid_pipe_reg : s_axil_a_rvalid_reg;
|
||||
|
||||
assign s_axil_wr_b.awready = s_axil_b_awready_reg;
|
||||
assign s_axil_wr_b.wready = s_axil_b_wready_reg;
|
||||
assign s_axil_wr_b.bresp = 2'b00;
|
||||
assign s_axil_wr_b.bvalid = s_axil_b_bvalid_reg;
|
||||
|
||||
assign s_axil_rd_b.arready = s_axil_b_arready_reg;
|
||||
assign s_axil_rd_b.rdata = PIPELINE_OUTPUT ? s_axil_b_rdata_pipe_reg : s_axil_b_rdata_reg;
|
||||
assign s_axil_rd_b.rresp = 2'b00;
|
||||
assign s_axil_rd_b.rvalid = PIPELINE_OUTPUT ? s_axil_b_rvalid_pipe_reg : s_axil_b_rvalid_reg;
|
||||
|
||||
initial begin
|
||||
// two nested loops for smaller number of iterations per loop
|
||||
// workaround for synthesizer complaints about large loop counts
|
||||
for (integer i = 0; i < 2**VALID_ADDR_W; i = i + 2**(VALID_ADDR_W/2)) begin
|
||||
for (integer j = i; j < i + 2**(VALID_ADDR_W/2); j = j + 1) begin
|
||||
mem[j] = 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always_comb begin
|
||||
mem_wr_en_a = 1'b0;
|
||||
mem_rd_en_a = 1'b0;
|
||||
|
||||
last_read_a_next = last_read_a_reg;
|
||||
|
||||
s_axil_a_awready_next = 1'b0;
|
||||
s_axil_a_wready_next = 1'b0;
|
||||
s_axil_a_bvalid_next = s_axil_a_bvalid_reg && !s_axil_wr_a.bready;
|
||||
|
||||
s_axil_a_arready_next = 1'b0;
|
||||
s_axil_a_rvalid_next = s_axil_a_rvalid_reg && !(s_axil_rd_a.rready || (PIPELINE_OUTPUT && !s_axil_a_rvalid_pipe_reg));
|
||||
|
||||
write_eligible_a = s_axil_wr_a.awvalid && s_axil_wr_a.wvalid && (!s_axil_wr_a.bvalid || s_axil_wr_a.bready) && (!s_axil_wr_a.awready && !s_axil_wr_a.wready);
|
||||
read_eligible_a = s_axil_rd_a.arvalid && (!s_axil_rd_a.rvalid || s_axil_rd_a.rready || (PIPELINE_OUTPUT && !s_axil_a_rvalid_pipe_reg)) && (!s_axil_rd_a.arready);
|
||||
|
||||
if (write_eligible_a && (!read_eligible_a || last_read_a_reg)) begin
|
||||
last_read_a_next = 1'b0;
|
||||
|
||||
s_axil_a_awready_next = 1'b1;
|
||||
s_axil_a_wready_next = 1'b1;
|
||||
s_axil_a_bvalid_next = 1'b1;
|
||||
|
||||
mem_wr_en_a = 1'b1;
|
||||
end else if (read_eligible_a) begin
|
||||
last_read_a_next = 1'b1;
|
||||
|
||||
s_axil_a_arready_next = 1'b1;
|
||||
s_axil_a_rvalid_next = 1'b1;
|
||||
|
||||
mem_rd_en_a = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge a_clk) begin
|
||||
last_read_a_reg <= last_read_a_next;
|
||||
|
||||
s_axil_a_awready_reg <= s_axil_a_awready_next;
|
||||
s_axil_a_wready_reg <= s_axil_a_wready_next;
|
||||
s_axil_a_bvalid_reg <= s_axil_a_bvalid_next;
|
||||
|
||||
s_axil_a_arready_reg <= s_axil_a_arready_next;
|
||||
s_axil_a_rvalid_reg <= s_axil_a_rvalid_next;
|
||||
|
||||
if (mem_rd_en_a) begin
|
||||
s_axil_a_rdata_reg <= mem[s_axil_a_araddr_valid];
|
||||
end else begin
|
||||
for (integer i = 0; i < BYTE_LANES; i = i + 1) begin
|
||||
if (mem_wr_en_a && s_axil_wr_a.wstrb[i]) begin
|
||||
mem[s_axil_a_awaddr_valid][BYTE_W*i +: BYTE_W] <= s_axil_wr_a.wdata[BYTE_W*i +: BYTE_W];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if (!s_axil_a_rvalid_pipe_reg || s_axil_rd_a.rready) begin
|
||||
s_axil_a_rdata_pipe_reg <= s_axil_a_rdata_reg;
|
||||
s_axil_a_rvalid_pipe_reg <= s_axil_a_rvalid_reg;
|
||||
end
|
||||
|
||||
if (a_rst) begin
|
||||
last_read_a_reg <= 1'b0;
|
||||
|
||||
s_axil_a_awready_reg <= 1'b0;
|
||||
s_axil_a_wready_reg <= 1'b0;
|
||||
s_axil_a_bvalid_reg <= 1'b0;
|
||||
|
||||
s_axil_a_arready_reg <= 1'b0;
|
||||
s_axil_a_rvalid_reg <= 1'b0;
|
||||
s_axil_a_rvalid_pipe_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_comb begin
|
||||
mem_wr_en_b = 1'b0;
|
||||
mem_rd_en_b = 1'b0;
|
||||
|
||||
last_read_b_next = last_read_b_reg;
|
||||
|
||||
s_axil_b_awready_next = 1'b0;
|
||||
s_axil_b_wready_next = 1'b0;
|
||||
s_axil_b_bvalid_next = s_axil_b_bvalid_reg && !s_axil_wr_b.bready;
|
||||
|
||||
s_axil_b_arready_next = 1'b0;
|
||||
s_axil_b_rvalid_next = s_axil_b_rvalid_reg && !(s_axil_rd_b.rready || (PIPELINE_OUTPUT && !s_axil_b_rvalid_pipe_reg));
|
||||
|
||||
write_eligible_b = s_axil_wr_b.awvalid && s_axil_wr_b.wvalid && (!s_axil_wr_b.bvalid || s_axil_wr_b.bready) && (!s_axil_wr_b.awready && !s_axil_wr_b.wready);
|
||||
read_eligible_b = s_axil_rd_b.arvalid && (!s_axil_rd_b.rvalid || s_axil_rd_b.rready || (PIPELINE_OUTPUT && !s_axil_b_rvalid_pipe_reg)) && (!s_axil_rd_b.arready);
|
||||
|
||||
if (write_eligible_b && (!read_eligible_b || last_read_b_reg)) begin
|
||||
last_read_b_next = 1'b0;
|
||||
|
||||
s_axil_b_awready_next = 1'b1;
|
||||
s_axil_b_wready_next = 1'b1;
|
||||
s_axil_b_bvalid_next = 1'b1;
|
||||
|
||||
mem_wr_en_b = 1'b1;
|
||||
end else if (read_eligible_b) begin
|
||||
last_read_b_next = 1'b1;
|
||||
|
||||
s_axil_b_arready_next = 1'b1;
|
||||
s_axil_b_rvalid_next = 1'b1;
|
||||
|
||||
mem_rd_en_b = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge b_clk) begin
|
||||
last_read_b_reg <= last_read_b_next;
|
||||
|
||||
s_axil_b_awready_reg <= s_axil_b_awready_next;
|
||||
s_axil_b_wready_reg <= s_axil_b_wready_next;
|
||||
s_axil_b_bvalid_reg <= s_axil_b_bvalid_next;
|
||||
|
||||
s_axil_b_arready_reg <= s_axil_b_arready_next;
|
||||
s_axil_b_rvalid_reg <= s_axil_b_rvalid_next;
|
||||
|
||||
if (mem_rd_en_b) begin
|
||||
s_axil_b_rdata_reg <= mem[s_axil_b_araddr_valid];
|
||||
end else begin
|
||||
for (integer i = 0; i < BYTE_LANES; i = i + 1) begin
|
||||
if (mem_wr_en_b && s_axil_wr_b.wstrb[i]) begin
|
||||
mem[s_axil_b_awaddr_valid][BYTE_W*i +: BYTE_W] <= s_axil_wr_b.wdata[BYTE_W*i +: BYTE_W];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if (!s_axil_b_rvalid_pipe_reg || s_axil_rd_b.rready) begin
|
||||
s_axil_b_rdata_pipe_reg <= s_axil_b_rdata_reg;
|
||||
s_axil_b_rvalid_pipe_reg <= s_axil_b_rvalid_reg;
|
||||
end
|
||||
|
||||
if (b_rst) begin
|
||||
last_read_b_reg <= 1'b0;
|
||||
|
||||
s_axil_b_awready_reg <= 1'b0;
|
||||
s_axil_b_wready_reg <= 1'b0;
|
||||
s_axil_b_bvalid_reg <= 1'b0;
|
||||
|
||||
s_axil_b_arready_reg <= 1'b0;
|
||||
s_axil_b_rvalid_reg <= 1'b0;
|
||||
s_axil_b_rvalid_pipe_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
175
src/axi/rtl/taxi_axil_if.sv
Normal file
175
src/axi/rtl/taxi_axil_if.sv
Normal file
@@ -0,0 +1,175 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
/*
|
||||
|
||||
Copyright (c) 2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
interface taxi_axil_if #(
|
||||
// Width of data bus in bits
|
||||
parameter DATA_W = 32,
|
||||
// Width of address bus in bits
|
||||
parameter ADDR_W = 32,
|
||||
// Width of wstrb (width of data bus in words)
|
||||
parameter STRB_W = (DATA_W/8),
|
||||
// Use awuser signal
|
||||
parameter logic AWUSER_EN = 1'b0,
|
||||
// Width of awuser signal
|
||||
parameter AWUSER_W = 1,
|
||||
// Use wuser signal
|
||||
parameter logic WUSER_EN = 1'b0,
|
||||
// Width of wuser signal
|
||||
parameter WUSER_W = 1,
|
||||
// Use buser signal
|
||||
parameter logic BUSER_EN = 1'b0,
|
||||
// Width of buser signal
|
||||
parameter BUSER_W = 1,
|
||||
// Use aruser signal
|
||||
parameter logic ARUSER_EN = 1'b0,
|
||||
// Width of aruser signal
|
||||
parameter ARUSER_W = 1,
|
||||
// Use ruser signal
|
||||
parameter logic RUSER_EN = 1'b0,
|
||||
// Width of ruser signal
|
||||
parameter RUSER_W = 1
|
||||
)
|
||||
();
|
||||
// AW
|
||||
logic [ADDR_W-1:0] awaddr;
|
||||
logic [2:0] awprot;
|
||||
logic [AWUSER_W-1:0] awuser;
|
||||
logic awvalid;
|
||||
logic awready;
|
||||
// W
|
||||
logic [DATA_W-1:0] wdata;
|
||||
logic [STRB_W-1:0] wstrb;
|
||||
logic [WUSER_W-1:0] wuser;
|
||||
logic wvalid;
|
||||
logic wready;
|
||||
// B
|
||||
logic [1:0] bresp;
|
||||
logic [BUSER_W-1:0] buser;
|
||||
logic bvalid;
|
||||
logic bready;
|
||||
// AR
|
||||
logic [ADDR_W-1:0] araddr;
|
||||
logic [2:0] arprot;
|
||||
logic [ARUSER_W-1:0] aruser;
|
||||
logic arvalid;
|
||||
logic arready;
|
||||
// R
|
||||
logic [DATA_W-1:0] rdata;
|
||||
logic [1:0] rresp;
|
||||
logic [RUSER_W-1:0] ruser;
|
||||
logic rvalid;
|
||||
logic rready;
|
||||
|
||||
modport wr_mst (
|
||||
// AW
|
||||
output awaddr,
|
||||
output awprot,
|
||||
output awuser,
|
||||
output awvalid,
|
||||
input awready,
|
||||
// W
|
||||
output wdata,
|
||||
output wstrb,
|
||||
output wuser,
|
||||
output wvalid,
|
||||
input wready,
|
||||
// B
|
||||
input bresp,
|
||||
input buser,
|
||||
input bvalid,
|
||||
output bready
|
||||
);
|
||||
|
||||
modport rd_mst (
|
||||
// AR
|
||||
output araddr,
|
||||
output arprot,
|
||||
output aruser,
|
||||
output arvalid,
|
||||
input arready,
|
||||
// R
|
||||
input rdata,
|
||||
input rresp,
|
||||
input ruser,
|
||||
input rvalid,
|
||||
output rready
|
||||
);
|
||||
|
||||
modport wr_slv (
|
||||
// AW
|
||||
input awaddr,
|
||||
input awprot,
|
||||
input awuser,
|
||||
input awvalid,
|
||||
output awready,
|
||||
// W
|
||||
input wdata,
|
||||
input wstrb,
|
||||
input wuser,
|
||||
input wvalid,
|
||||
output wready,
|
||||
// B
|
||||
output bresp,
|
||||
output buser,
|
||||
output bvalid,
|
||||
input bready
|
||||
);
|
||||
|
||||
modport rd_slv (
|
||||
// AR
|
||||
input araddr,
|
||||
input arprot,
|
||||
input aruser,
|
||||
input arvalid,
|
||||
output arready,
|
||||
// R
|
||||
output rdata,
|
||||
output rresp,
|
||||
output ruser,
|
||||
output rvalid,
|
||||
input rready
|
||||
);
|
||||
|
||||
modport wr_mon (
|
||||
// AW
|
||||
input awaddr,
|
||||
input awprot,
|
||||
input awuser,
|
||||
input awvalid,
|
||||
input awready,
|
||||
// W
|
||||
input wdata,
|
||||
input wstrb,
|
||||
input wuser,
|
||||
input wvalid,
|
||||
input wready,
|
||||
// B
|
||||
input bresp,
|
||||
input buser,
|
||||
input bvalid,
|
||||
input bready
|
||||
);
|
||||
|
||||
modport rd_mon (
|
||||
// AR
|
||||
input araddr,
|
||||
input arprot,
|
||||
input aruser,
|
||||
input arvalid,
|
||||
input arready,
|
||||
// R
|
||||
input rdata,
|
||||
input rresp,
|
||||
input ruser,
|
||||
input rvalid,
|
||||
input rready
|
||||
);
|
||||
|
||||
endinterface
|
||||
165
src/axi/rtl/taxi_axil_ram.sv
Normal file
165
src/axi/rtl/taxi_axil_ram.sv
Normal file
@@ -0,0 +1,165 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4-Lite RAM
|
||||
*/
|
||||
module taxi_axil_ram #
|
||||
(
|
||||
// Width of address bus in bits
|
||||
parameter ADDR_W = 16,
|
||||
// Extra pipeline register on output
|
||||
parameter logic PIPELINE_OUTPUT = 1'b0
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4-Lite slave interface
|
||||
*/
|
||||
taxi_axil_if.wr_slv s_axil_wr,
|
||||
taxi_axil_if.rd_slv s_axil_rd
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axil_wr.DATA_W;
|
||||
localparam STRB_W = s_axil_wr.STRB_W;
|
||||
|
||||
localparam VALID_ADDR_W = ADDR_W - $clog2(STRB_W);
|
||||
localparam BYTE_LANES = STRB_W;
|
||||
localparam BYTE_W = DATA_W/BYTE_LANES;
|
||||
|
||||
// check configuration
|
||||
if (BYTE_W * STRB_W != DATA_W)
|
||||
$fatal(0, "Error: AXI data width not evenly divisible (instance %m)");
|
||||
|
||||
if (2**$clog2(BYTE_LANES) != BYTE_LANES)
|
||||
$fatal(0, "Error: AXI byte lane count must be even power of two (instance %m)");
|
||||
|
||||
if (s_axil_wr.DATA_W != s_axil_rd.DATA_W)
|
||||
$fatal(0, "Error: AXI interface configuration mismatch (instance %m)");
|
||||
|
||||
if (s_axil_wr.ADDR_W < ADDR_W || s_axil_rd.ADDR_W < ADDR_W)
|
||||
$fatal(0, "Error: AXI address width is insufficient (instance %m)");
|
||||
|
||||
logic mem_wr_en;
|
||||
logic mem_rd_en;
|
||||
|
||||
logic s_axil_awready_reg = 1'b0, s_axil_awready_next;
|
||||
logic s_axil_wready_reg = 1'b0, s_axil_wready_next;
|
||||
logic s_axil_bvalid_reg = 1'b0, s_axil_bvalid_next;
|
||||
logic s_axil_arready_reg = 1'b0, s_axil_arready_next;
|
||||
logic [DATA_W-1:0] s_axil_rdata_reg = '0, s_axil_rdata_next;
|
||||
logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next;
|
||||
logic [DATA_W-1:0] s_axil_rdata_pipe_reg = '0;
|
||||
logic s_axil_rvalid_pipe_reg = 1'b0;
|
||||
|
||||
// (* RAM_STYLE="BLOCK" *)
|
||||
logic [DATA_W-1:0] mem[2**VALID_ADDR_W];
|
||||
|
||||
wire [VALID_ADDR_W-1:0] s_axil_awaddr_valid = VALID_ADDR_W'(s_axil_wr.awaddr >> (ADDR_W - VALID_ADDR_W));
|
||||
wire [VALID_ADDR_W-1:0] s_axil_araddr_valid = VALID_ADDR_W'(s_axil_rd.araddr >> (ADDR_W - VALID_ADDR_W));
|
||||
|
||||
assign s_axil_wr.awready = s_axil_awready_reg;
|
||||
assign s_axil_wr.wready = s_axil_wready_reg;
|
||||
assign s_axil_wr.bresp = 2'b00;
|
||||
assign s_axil_wr.bvalid = s_axil_bvalid_reg;
|
||||
|
||||
assign s_axil_rd.arready = s_axil_arready_reg;
|
||||
assign s_axil_rd.rdata = PIPELINE_OUTPUT ? s_axil_rdata_pipe_reg : s_axil_rdata_reg;
|
||||
assign s_axil_rd.rresp = 2'b00;
|
||||
assign s_axil_rd.rvalid = PIPELINE_OUTPUT ? s_axil_rvalid_pipe_reg : s_axil_rvalid_reg;
|
||||
|
||||
initial begin
|
||||
// two nested loops for smaller number of iterations per loop
|
||||
// workaround for synthesizer complaints about large loop counts
|
||||
for (integer i = 0; i < 2**VALID_ADDR_W; i = i + 2**(VALID_ADDR_W/2)) begin
|
||||
for (integer j = i; j < i + 2**(VALID_ADDR_W/2); j = j + 1) begin
|
||||
mem[j] = '0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always_comb begin
|
||||
mem_wr_en = 1'b0;
|
||||
|
||||
s_axil_awready_next = 1'b0;
|
||||
s_axil_wready_next = 1'b0;
|
||||
s_axil_bvalid_next = s_axil_bvalid_reg && !s_axil_wr.bready;
|
||||
|
||||
if (s_axil_wr.awvalid && s_axil_wr.wvalid && (!s_axil_wr.bvalid || s_axil_wr.bready) && (!s_axil_wr.awready && !s_axil_wr.wready)) begin
|
||||
s_axil_awready_next = 1'b1;
|
||||
s_axil_wready_next = 1'b1;
|
||||
s_axil_bvalid_next = 1'b1;
|
||||
|
||||
mem_wr_en = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_awready_reg <= s_axil_awready_next;
|
||||
s_axil_wready_reg <= s_axil_wready_next;
|
||||
s_axil_bvalid_reg <= s_axil_bvalid_next;
|
||||
|
||||
for (integer i = 0; i < BYTE_LANES; i = i + 1) begin
|
||||
if (mem_wr_en && s_axil_wr.wstrb[i]) begin
|
||||
mem[s_axil_awaddr_valid][BYTE_W*i +: BYTE_W] <= s_axil_wr.wdata[BYTE_W*i +: BYTE_W];
|
||||
end
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_awready_reg <= 1'b0;
|
||||
s_axil_wready_reg <= 1'b0;
|
||||
s_axil_bvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_comb begin
|
||||
mem_rd_en = 1'b0;
|
||||
|
||||
s_axil_arready_next = 1'b0;
|
||||
s_axil_rvalid_next = s_axil_rvalid_reg && !(s_axil_rd.rready || (PIPELINE_OUTPUT && !s_axil_rvalid_pipe_reg));
|
||||
|
||||
if (s_axil_rd.arvalid && (!s_axil_rd.rvalid || s_axil_rd.rready || (PIPELINE_OUTPUT && !s_axil_rvalid_pipe_reg)) && (!s_axil_rd.arready)) begin
|
||||
s_axil_arready_next = 1'b1;
|
||||
s_axil_rvalid_next = 1'b1;
|
||||
|
||||
mem_rd_en = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_arready_reg <= s_axil_arready_next;
|
||||
s_axil_rvalid_reg <= s_axil_rvalid_next;
|
||||
|
||||
if (mem_rd_en) begin
|
||||
s_axil_rdata_reg <= mem[s_axil_araddr_valid];
|
||||
end
|
||||
|
||||
if (!s_axil_rvalid_pipe_reg || s_axil_rd.rready) begin
|
||||
s_axil_rdata_pipe_reg <= s_axil_rdata_reg;
|
||||
s_axil_rvalid_pipe_reg <= s_axil_rvalid_reg;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_arready_reg <= 1'b0;
|
||||
s_axil_rvalid_reg <= 1'b0;
|
||||
s_axil_rvalid_pipe_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
4
src/axi/rtl/taxi_axil_register.f
Normal file
4
src/axi/rtl/taxi_axil_register.f
Normal file
@@ -0,0 +1,4 @@
|
||||
taxi_axil_register.sv
|
||||
taxi_axil_register_wr.sv
|
||||
taxi_axil_register_rd.sv
|
||||
taxi_axil_if.sv
|
||||
94
src/axi/rtl/taxi_axil_register.sv
Normal file
94
src/axi/rtl/taxi_axil_register.sv
Normal file
@@ -0,0 +1,94 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 lite register
|
||||
*/
|
||||
module taxi_axil_register #
|
||||
(
|
||||
// AW channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter AW_REG_TYPE = 1,
|
||||
// W channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter W_REG_TYPE = 1,
|
||||
// B channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter B_REG_TYPE = 1,
|
||||
// AR channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter AR_REG_TYPE = 1,
|
||||
// R channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter R_REG_TYPE = 1
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4-Lite slave interface
|
||||
*/
|
||||
taxi_axil_if.wr_slv s_axil_wr,
|
||||
taxi_axil_if.rd_slv s_axil_rd,
|
||||
|
||||
/*
|
||||
* AXI4-Lite master interface
|
||||
*/
|
||||
taxi_axil_if.wr_mst m_axil_wr,
|
||||
taxi_axil_if.rd_mst m_axil_rd
|
||||
);
|
||||
|
||||
taxi_axil_register_wr #(
|
||||
.AW_REG_TYPE(AW_REG_TYPE),
|
||||
.W_REG_TYPE(W_REG_TYPE),
|
||||
.B_REG_TYPE(B_REG_TYPE)
|
||||
)
|
||||
axil_register_wr_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* AXI4-Lite slave interface
|
||||
*/
|
||||
.s_axil_wr(s_axil_wr),
|
||||
|
||||
/*
|
||||
* AXI4-Lite master interface
|
||||
*/
|
||||
.m_axil_wr(m_axil_wr)
|
||||
);
|
||||
|
||||
taxi_axil_register_rd #(
|
||||
.AR_REG_TYPE(AR_REG_TYPE),
|
||||
.R_REG_TYPE(R_REG_TYPE)
|
||||
)
|
||||
axil_register_rd_inst (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
/*
|
||||
* AXI4-Lite slave interface
|
||||
*/
|
||||
.s_axil_rd(s_axil_rd),
|
||||
|
||||
/*
|
||||
* AXI4-Lite master interface
|
||||
*/
|
||||
.m_axil_rd(m_axil_rd)
|
||||
);
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
371
src/axi/rtl/taxi_axil_register_rd.sv
Normal file
371
src/axi/rtl/taxi_axil_register_rd.sv
Normal file
@@ -0,0 +1,371 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 lite register (read)
|
||||
*/
|
||||
module taxi_axil_register_rd #
|
||||
(
|
||||
// AR channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter AR_REG_TYPE = 1,
|
||||
// R channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter R_REG_TYPE = 1
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4-Lite slave interface
|
||||
*/
|
||||
taxi_axil_if.rd_slv s_axil_rd,
|
||||
|
||||
/*
|
||||
* AXI4-Lite master interface
|
||||
*/
|
||||
taxi_axil_if.rd_mst m_axil_rd
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axil_rd.DATA_W;
|
||||
localparam ADDR_W = s_axil_rd.ADDR_W;
|
||||
localparam STRB_W = s_axil_rd.STRB_W;
|
||||
localparam logic ARUSER_EN = s_axil_rd.ARUSER_EN && m_axil_rd.ARUSER_EN;
|
||||
localparam ARUSER_W = s_axil_rd.ARUSER_W;
|
||||
localparam logic RUSER_EN = s_axil_rd.RUSER_EN && m_axil_rd.RUSER_EN;
|
||||
localparam RUSER_W = s_axil_rd.RUSER_W;
|
||||
|
||||
if (m_axil_rd.DATA_W != DATA_W)
|
||||
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
|
||||
|
||||
if (m_axil_rd.STRB_W != STRB_W)
|
||||
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
|
||||
|
||||
// AR channel
|
||||
|
||||
if (AR_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axil_arready_reg = 1'b0;
|
||||
|
||||
logic [ADDR_W-1:0] m_axil_araddr_reg = '0;
|
||||
logic [2:0] m_axil_arprot_reg = '0;
|
||||
logic [ARUSER_W-1:0] m_axil_aruser_reg = '0;
|
||||
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
|
||||
|
||||
logic [ADDR_W-1:0] temp_m_axil_araddr_reg = '0;
|
||||
logic [2:0] temp_m_axil_arprot_reg = '0;
|
||||
logic [ARUSER_W-1:0] temp_m_axil_aruser_reg = '0;
|
||||
logic temp_m_axil_arvalid_reg = 1'b0, temp_m_axil_arvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_ar_input_to_output;
|
||||
logic store_axil_ar_input_to_temp;
|
||||
logic store_axil_ar_temp_to_output;
|
||||
|
||||
assign s_axil_rd.arready = s_axil_arready_reg;
|
||||
|
||||
assign m_axil_rd.araddr = m_axil_araddr_reg;
|
||||
assign m_axil_rd.arprot = m_axil_arprot_reg;
|
||||
assign m_axil_rd.aruser = ARUSER_EN ? m_axil_aruser_reg : '0;
|
||||
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire s_axil_arready_early = m_axil_rd.arready || (!temp_m_axil_arvalid_reg && (!m_axil_arvalid_reg || !s_axil_rd.arvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axil_arvalid_next = m_axil_arvalid_reg;
|
||||
temp_m_axil_arvalid_next = temp_m_axil_arvalid_reg;
|
||||
|
||||
store_axil_ar_input_to_output = 1'b0;
|
||||
store_axil_ar_input_to_temp = 1'b0;
|
||||
store_axil_ar_temp_to_output = 1'b0;
|
||||
|
||||
if (s_axil_arready_reg) begin
|
||||
// input is ready
|
||||
if (m_axil_rd.arready || !m_axil_arvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axil_arvalid_next = s_axil_rd.arvalid;
|
||||
store_axil_ar_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axil_arvalid_next = s_axil_rd.arvalid;
|
||||
store_axil_ar_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axil_rd.arready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axil_arvalid_next = temp_m_axil_arvalid_reg;
|
||||
temp_m_axil_arvalid_next = 1'b0;
|
||||
store_axil_ar_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_arready_reg <= s_axil_arready_early;
|
||||
m_axil_arvalid_reg <= m_axil_arvalid_next;
|
||||
temp_m_axil_arvalid_reg <= temp_m_axil_arvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_ar_input_to_output) begin
|
||||
m_axil_araddr_reg <= s_axil_rd.araddr;
|
||||
m_axil_arprot_reg <= s_axil_rd.arprot;
|
||||
m_axil_aruser_reg <= s_axil_rd.aruser;
|
||||
end else if (store_axil_ar_temp_to_output) begin
|
||||
m_axil_araddr_reg <= temp_m_axil_araddr_reg;
|
||||
m_axil_arprot_reg <= temp_m_axil_arprot_reg;
|
||||
m_axil_aruser_reg <= temp_m_axil_aruser_reg;
|
||||
end
|
||||
|
||||
if (store_axil_ar_input_to_temp) begin
|
||||
temp_m_axil_araddr_reg <= s_axil_rd.araddr;
|
||||
temp_m_axil_arprot_reg <= s_axil_rd.arprot;
|
||||
temp_m_axil_aruser_reg <= s_axil_rd.aruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_arready_reg <= 1'b0;
|
||||
m_axil_arvalid_reg <= 1'b0;
|
||||
temp_m_axil_arvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (AR_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axil_arready_reg = 1'b0;
|
||||
|
||||
logic [ADDR_W-1:0] m_axil_araddr_reg = '0;
|
||||
logic [2:0] m_axil_arprot_reg = '0;
|
||||
logic [ARUSER_W-1:0] m_axil_aruser_reg = '0;
|
||||
logic m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_ar_input_to_output;
|
||||
|
||||
assign s_axil_rd.arready = s_axil_arready_reg;
|
||||
|
||||
assign m_axil_rd.araddr = m_axil_araddr_reg;
|
||||
assign m_axil_rd.arprot = m_axil_arprot_reg;
|
||||
assign m_axil_rd.aruser = ARUSER_EN ? m_axil_aruser_reg : '0;
|
||||
assign m_axil_rd.arvalid = m_axil_arvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire s_axil_arready_early = !m_axil_arvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axil_arvalid_next = m_axil_arvalid_reg;
|
||||
|
||||
store_axil_ar_input_to_output = 1'b0;
|
||||
|
||||
if (s_axil_arready_reg) begin
|
||||
m_axil_arvalid_next = s_axil_rd.arvalid;
|
||||
store_axil_ar_input_to_output = 1'b1;
|
||||
end else if (m_axil_rd.arready) begin
|
||||
m_axil_arvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_arready_reg <= s_axil_arready_early;
|
||||
m_axil_arvalid_reg <= m_axil_arvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_ar_input_to_output) begin
|
||||
m_axil_araddr_reg <= s_axil_rd.araddr;
|
||||
m_axil_arprot_reg <= s_axil_rd.arprot;
|
||||
m_axil_aruser_reg <= s_axil_rd.aruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_arready_reg <= 1'b0;
|
||||
m_axil_arvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass AR channel
|
||||
assign m_axil_rd.araddr = s_axil_rd.araddr;
|
||||
assign m_axil_rd.arprot = s_axil_rd.arprot;
|
||||
assign m_axil_rd.aruser = ARUSER_EN ? s_axil_rd.aruser : '0;
|
||||
assign m_axil_rd.arvalid = s_axil_rd.arvalid;
|
||||
assign s_axil_rd.arready = m_axil_rd.arready;
|
||||
|
||||
end
|
||||
|
||||
// R channel
|
||||
|
||||
if (R_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axil_rready_reg = 1'b0;
|
||||
|
||||
logic [DATA_W-1:0] s_axil_rdata_reg = '0;
|
||||
logic [1:0] s_axil_rresp_reg = 2'b0;
|
||||
logic [RUSER_W-1:0] s_axil_ruser_reg = '0;
|
||||
logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next;
|
||||
|
||||
logic [DATA_W-1:0] temp_s_axil_rdata_reg = '0;
|
||||
logic [1:0] temp_s_axil_rresp_reg = 2'b0;
|
||||
logic [RUSER_W-1:0] temp_s_axil_ruser_reg = '0;
|
||||
logic temp_s_axil_rvalid_reg = 1'b0, temp_s_axil_rvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_r_input_to_output;
|
||||
logic store_axil_r_input_to_temp;
|
||||
logic store_axil_r_temp_to_output;
|
||||
|
||||
assign m_axil_rd.rready = m_axil_rready_reg;
|
||||
|
||||
assign s_axil_rd.rdata = s_axil_rdata_reg;
|
||||
assign s_axil_rd.rresp = s_axil_rresp_reg;
|
||||
assign s_axil_rd.ruser = RUSER_EN ? s_axil_ruser_reg : '0;
|
||||
assign s_axil_rd.rvalid = s_axil_rvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire m_axil_rready_early = s_axil_rd.rready || (!temp_s_axil_rvalid_reg && (!s_axil_rvalid_reg || !m_axil_rd.rvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axil_rvalid_next = s_axil_rvalid_reg;
|
||||
temp_s_axil_rvalid_next = temp_s_axil_rvalid_reg;
|
||||
|
||||
store_axil_r_input_to_output = 1'b0;
|
||||
store_axil_r_input_to_temp = 1'b0;
|
||||
store_axil_r_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axil_rready_reg) begin
|
||||
// input is ready
|
||||
if (s_axil_rd.rready || !s_axil_rvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
s_axil_rvalid_next = m_axil_rd.rvalid;
|
||||
store_axil_r_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_s_axil_rvalid_next = m_axil_rd.rvalid;
|
||||
store_axil_r_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (s_axil_rd.rready) begin
|
||||
// input is not ready, but output is ready
|
||||
s_axil_rvalid_next = temp_s_axil_rvalid_reg;
|
||||
temp_s_axil_rvalid_next = 1'b0;
|
||||
store_axil_r_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axil_rready_reg <= m_axil_rready_early;
|
||||
s_axil_rvalid_reg <= s_axil_rvalid_next;
|
||||
temp_s_axil_rvalid_reg <= temp_s_axil_rvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_r_input_to_output) begin
|
||||
s_axil_rdata_reg <= m_axil_rd.rdata;
|
||||
s_axil_rresp_reg <= m_axil_rd.rresp;
|
||||
s_axil_ruser_reg <= m_axil_rd.ruser;
|
||||
end else if (store_axil_r_temp_to_output) begin
|
||||
s_axil_rdata_reg <= temp_s_axil_rdata_reg;
|
||||
s_axil_rresp_reg <= temp_s_axil_rresp_reg;
|
||||
s_axil_ruser_reg <= temp_s_axil_ruser_reg;
|
||||
end
|
||||
|
||||
if (store_axil_r_input_to_temp) begin
|
||||
temp_s_axil_rdata_reg <= m_axil_rd.rdata;
|
||||
temp_s_axil_rresp_reg <= m_axil_rd.rresp;
|
||||
temp_s_axil_ruser_reg <= m_axil_rd.ruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axil_rready_reg <= 1'b0;
|
||||
s_axil_rvalid_reg <= 1'b0;
|
||||
temp_s_axil_rvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (R_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axil_rready_reg = 1'b0;
|
||||
|
||||
logic [DATA_W-1:0] s_axil_rdata_reg = '0;
|
||||
logic [1:0] s_axil_rresp_reg = 2'b0;
|
||||
logic [RUSER_W-1:0] s_axil_ruser_reg = '0;
|
||||
logic s_axil_rvalid_reg = 1'b0, s_axil_rvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_r_input_to_output;
|
||||
|
||||
assign m_axil_rd.rready = m_axil_rready_reg;
|
||||
|
||||
assign s_axil_rd.rdata = s_axil_rdata_reg;
|
||||
assign s_axil_rd.rresp = s_axil_rresp_reg;
|
||||
assign s_axil_rd.ruser = RUSER_EN ? s_axil_ruser_reg : '0;
|
||||
assign s_axil_rd.rvalid = s_axil_rvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire m_axil_rready_early = !s_axil_rvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axil_rvalid_next = s_axil_rvalid_reg;
|
||||
|
||||
store_axil_r_input_to_output = 1'b0;
|
||||
|
||||
if (m_axil_rready_reg) begin
|
||||
s_axil_rvalid_next = m_axil_rd.rvalid;
|
||||
store_axil_r_input_to_output = 1'b1;
|
||||
end else if (s_axil_rd.rready) begin
|
||||
s_axil_rvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axil_rready_reg <= m_axil_rready_early;
|
||||
s_axil_rvalid_reg <= s_axil_rvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_r_input_to_output) begin
|
||||
s_axil_rdata_reg <= m_axil_rd.rdata;
|
||||
s_axil_rresp_reg <= m_axil_rd.rresp;
|
||||
s_axil_ruser_reg <= m_axil_rd.ruser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axil_rready_reg <= 1'b0;
|
||||
s_axil_rvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass R channel
|
||||
assign s_axil_rd.rdata = m_axil_rd.rdata;
|
||||
assign s_axil_rd.rresp = m_axil_rd.rresp;
|
||||
assign s_axil_rd.ruser = RUSER_EN ? m_axil_rd.ruser : '0;
|
||||
assign s_axil_rd.rvalid = m_axil_rd.rvalid;
|
||||
assign m_axil_rd.rready = s_axil_rd.rready;
|
||||
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
522
src/axi/rtl/taxi_axil_register_wr.sv
Normal file
522
src/axi/rtl/taxi_axil_register_wr.sv
Normal file
@@ -0,0 +1,522 @@
|
||||
// SPDX-License-Identifier: CERN-OHL-S-2.0
|
||||
/*
|
||||
|
||||
Copyright (c) 2018-2025 FPGA Ninja, LLC
|
||||
|
||||
Authors:
|
||||
- Alex Forencich
|
||||
|
||||
*/
|
||||
|
||||
`resetall
|
||||
`timescale 1ns / 1ps
|
||||
`default_nettype none
|
||||
|
||||
/*
|
||||
* AXI4 lite register (write)
|
||||
*/
|
||||
module taxi_axil_register_wr #
|
||||
(
|
||||
// AW channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter AW_REG_TYPE = 1,
|
||||
// W channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter W_REG_TYPE = 1,
|
||||
// B channel register type
|
||||
// 0 to bypass, 1 for simple buffer
|
||||
parameter B_REG_TYPE = 1
|
||||
)
|
||||
(
|
||||
input wire logic clk,
|
||||
input wire logic rst,
|
||||
|
||||
/*
|
||||
* AXI4-Lite slave interface
|
||||
*/
|
||||
taxi_axil_if.wr_slv s_axil_wr,
|
||||
|
||||
/*
|
||||
* AXI4-Lite master interface
|
||||
*/
|
||||
taxi_axil_if.wr_mst m_axil_wr
|
||||
);
|
||||
|
||||
// extract parameters
|
||||
localparam DATA_W = s_axil_wr.DATA_W;
|
||||
localparam ADDR_W = s_axil_wr.ADDR_W;
|
||||
localparam STRB_W = s_axil_wr.STRB_W;
|
||||
localparam logic AWUSER_EN = s_axil_wr.AWUSER_EN && m_axil_wr.AWUSER_EN;
|
||||
localparam AWUSER_W = s_axil_wr.AWUSER_W;
|
||||
localparam logic WUSER_EN = s_axil_wr.WUSER_EN && m_axil_wr.WUSER_EN;
|
||||
localparam WUSER_W = s_axil_wr.WUSER_W;
|
||||
localparam logic BUSER_EN = s_axil_wr.BUSER_EN && m_axil_wr.BUSER_EN;
|
||||
localparam BUSER_W = s_axil_wr.BUSER_W;
|
||||
|
||||
if (m_axil_wr.DATA_W != DATA_W)
|
||||
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
|
||||
|
||||
if (m_axil_wr.STRB_W != STRB_W)
|
||||
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
|
||||
|
||||
// AW channel
|
||||
|
||||
if (AW_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axil_awready_reg = 1'b0;
|
||||
|
||||
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0;
|
||||
logic [2:0] m_axil_awprot_reg = '0;
|
||||
logic [AWUSER_W-1:0] m_axil_awuser_reg = '0;
|
||||
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
|
||||
|
||||
logic [ADDR_W-1:0] temp_m_axil_awaddr_reg = '0;
|
||||
logic [2:0] temp_m_axil_awprot_reg = '0;
|
||||
logic [AWUSER_W-1:0] temp_m_axil_awuser_reg = '0;
|
||||
logic temp_m_axil_awvalid_reg = 1'b0, temp_m_axil_awvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_aw_input_to_output;
|
||||
logic store_axil_aw_input_to_temp;
|
||||
logic store_axil_aw_temp_to_output;
|
||||
|
||||
assign s_axil_wr.awready = s_axil_awready_reg;
|
||||
|
||||
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
|
||||
assign m_axil_wr.awprot = m_axil_awprot_reg;
|
||||
assign m_axil_wr.awuser = AWUSER_EN ? m_axil_awuser_reg : '0;
|
||||
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire s_axil_awready_early = m_axil_wr.awready || (!temp_m_axil_awvalid_reg && (!m_axil_awvalid_reg || !s_axil_wr.awvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axil_awvalid_next = m_axil_awvalid_reg;
|
||||
temp_m_axil_awvalid_next = temp_m_axil_awvalid_reg;
|
||||
|
||||
store_axil_aw_input_to_output = 1'b0;
|
||||
store_axil_aw_input_to_temp = 1'b0;
|
||||
store_axil_aw_temp_to_output = 1'b0;
|
||||
|
||||
if (s_axil_awready_reg) begin
|
||||
// input is ready
|
||||
if (m_axil_wr.awready || !m_axil_awvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axil_awvalid_next = s_axil_wr.awvalid;
|
||||
store_axil_aw_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axil_awvalid_next = s_axil_wr.awvalid;
|
||||
store_axil_aw_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axil_wr.awready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axil_awvalid_next = temp_m_axil_awvalid_reg;
|
||||
temp_m_axil_awvalid_next = 1'b0;
|
||||
store_axil_aw_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_awready_reg <= s_axil_awready_early;
|
||||
m_axil_awvalid_reg <= m_axil_awvalid_next;
|
||||
temp_m_axil_awvalid_reg <= temp_m_axil_awvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_aw_input_to_output) begin
|
||||
m_axil_awaddr_reg <= s_axil_wr.awaddr;
|
||||
m_axil_awprot_reg <= s_axil_wr.awprot;
|
||||
m_axil_awuser_reg <= s_axil_wr.awuser;
|
||||
end else if (store_axil_aw_temp_to_output) begin
|
||||
m_axil_awaddr_reg <= temp_m_axil_awaddr_reg;
|
||||
m_axil_awprot_reg <= temp_m_axil_awprot_reg;
|
||||
m_axil_awuser_reg <= temp_m_axil_awuser_reg;
|
||||
end
|
||||
|
||||
if (store_axil_aw_input_to_temp) begin
|
||||
temp_m_axil_awaddr_reg <= s_axil_wr.awaddr;
|
||||
temp_m_axil_awprot_reg <= s_axil_wr.awprot;
|
||||
temp_m_axil_awuser_reg <= s_axil_wr.awuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_awready_reg <= 1'b0;
|
||||
m_axil_awvalid_reg <= 1'b0;
|
||||
temp_m_axil_awvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (AW_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axil_awready_reg = 1'b0;
|
||||
|
||||
logic [ADDR_W-1:0] m_axil_awaddr_reg = '0;
|
||||
logic [2:0] m_axil_awprot_reg = '0;
|
||||
logic [AWUSER_W-1:0] m_axil_awuser_reg = '0;
|
||||
logic m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_aw_input_to_output;
|
||||
|
||||
assign s_axil_wr.awready = s_axil_awready_reg;
|
||||
|
||||
assign m_axil_wr.awaddr = m_axil_awaddr_reg;
|
||||
assign m_axil_wr.awprot = m_axil_awprot_reg;
|
||||
assign m_axil_wr.awuser = AWUSER_EN ? m_axil_awuser_reg : '0;
|
||||
assign m_axil_wr.awvalid = m_axil_awvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire s_axil_awready_early = !m_axil_awvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axil_awvalid_next = m_axil_awvalid_reg;
|
||||
|
||||
store_axil_aw_input_to_output = 1'b0;
|
||||
|
||||
if (s_axil_awready_reg) begin
|
||||
m_axil_awvalid_next = s_axil_wr.awvalid;
|
||||
store_axil_aw_input_to_output = 1'b1;
|
||||
end else if (m_axil_wr.awready) begin
|
||||
m_axil_awvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_awready_reg <= s_axil_awready_early;
|
||||
m_axil_awvalid_reg <= m_axil_awvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_aw_input_to_output) begin
|
||||
m_axil_awaddr_reg <= s_axil_wr.awaddr;
|
||||
m_axil_awprot_reg <= s_axil_wr.awprot;
|
||||
m_axil_awuser_reg <= s_axil_wr.awuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_awready_reg <= 1'b0;
|
||||
m_axil_awvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass AW channel
|
||||
assign m_axil_wr.awaddr = s_axil_wr.awaddr;
|
||||
assign m_axil_wr.awprot = s_axil_wr.awprot;
|
||||
assign m_axil_wr.awuser = AWUSER_EN ? s_axil_wr.awuser : '0;
|
||||
assign m_axil_wr.awvalid = s_axil_wr.awvalid;
|
||||
assign s_axil_wr.awready = m_axil_wr.awready;
|
||||
|
||||
end
|
||||
|
||||
// W channel
|
||||
|
||||
if (W_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axil_wready_reg = 1'b0;
|
||||
|
||||
logic [DATA_W-1:0] m_axil_wdata_reg = '0;
|
||||
logic [STRB_W-1:0] m_axil_wstrb_reg = '0;
|
||||
logic [WUSER_W-1:0] m_axil_wuser_reg = '0;
|
||||
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
|
||||
|
||||
logic [DATA_W-1:0] temp_m_axil_wdata_reg = '0;
|
||||
logic [STRB_W-1:0] temp_m_axil_wstrb_reg = '0;
|
||||
logic [WUSER_W-1:0] temp_m_axil_wuser_reg = '0;
|
||||
logic temp_m_axil_wvalid_reg = 1'b0, temp_m_axil_wvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_w_input_to_output;
|
||||
logic store_axil_w_input_to_temp;
|
||||
logic store_axil_w_temp_to_output;
|
||||
|
||||
assign s_axil_wr.wready = s_axil_wready_reg;
|
||||
|
||||
assign m_axil_wr.wdata = m_axil_wdata_reg;
|
||||
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
|
||||
assign m_axil_wr.wuser = WUSER_EN ? m_axil_wuser_reg : '0;
|
||||
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire s_axil_wready_early = m_axil_wr.wready || (!temp_m_axil_wvalid_reg && (!m_axil_wvalid_reg || !s_axil_wr.wvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axil_wvalid_next = m_axil_wvalid_reg;
|
||||
temp_m_axil_wvalid_next = temp_m_axil_wvalid_reg;
|
||||
|
||||
store_axil_w_input_to_output = 1'b0;
|
||||
store_axil_w_input_to_temp = 1'b0;
|
||||
store_axil_w_temp_to_output = 1'b0;
|
||||
|
||||
if (s_axil_wready_reg) begin
|
||||
// input is ready
|
||||
if (m_axil_wr.wready || !m_axil_wvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
m_axil_wvalid_next = s_axil_wr.wvalid;
|
||||
store_axil_w_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_m_axil_wvalid_next = s_axil_wr.wvalid;
|
||||
store_axil_w_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (m_axil_wr.wready) begin
|
||||
// input is not ready, but output is ready
|
||||
m_axil_wvalid_next = temp_m_axil_wvalid_reg;
|
||||
temp_m_axil_wvalid_next = 1'b0;
|
||||
store_axil_w_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_wready_reg <= s_axil_wready_early;
|
||||
m_axil_wvalid_reg <= m_axil_wvalid_next;
|
||||
temp_m_axil_wvalid_reg <= temp_m_axil_wvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_w_input_to_output) begin
|
||||
m_axil_wdata_reg <= s_axil_wr.wdata;
|
||||
m_axil_wstrb_reg <= s_axil_wr.wstrb;
|
||||
m_axil_wuser_reg <= s_axil_wr.wuser;
|
||||
end else if (store_axil_w_temp_to_output) begin
|
||||
m_axil_wdata_reg <= temp_m_axil_wdata_reg;
|
||||
m_axil_wstrb_reg <= temp_m_axil_wstrb_reg;
|
||||
m_axil_wuser_reg <= temp_m_axil_wuser_reg;
|
||||
end
|
||||
|
||||
if (store_axil_w_input_to_temp) begin
|
||||
temp_m_axil_wdata_reg <= s_axil_wr.wdata;
|
||||
temp_m_axil_wstrb_reg <= s_axil_wr.wstrb;
|
||||
temp_m_axil_wuser_reg <= s_axil_wr.wuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_wready_reg <= 1'b0;
|
||||
m_axil_wvalid_reg <= 1'b0;
|
||||
temp_m_axil_wvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (W_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic s_axil_wready_reg = 1'b0;
|
||||
|
||||
logic [DATA_W-1:0] m_axil_wdata_reg = '0;
|
||||
logic [STRB_W-1:0] m_axil_wstrb_reg = '0;
|
||||
logic [WUSER_W-1:0] m_axil_wuser_reg = '0;
|
||||
logic m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_w_input_to_output;
|
||||
|
||||
assign s_axil_wr.wready = s_axil_wready_reg;
|
||||
|
||||
assign m_axil_wr.wdata = m_axil_wdata_reg;
|
||||
assign m_axil_wr.wstrb = m_axil_wstrb_reg;
|
||||
assign m_axil_wr.wuser = WUSER_EN ? m_axil_wuser_reg : '0;
|
||||
assign m_axil_wr.wvalid = m_axil_wvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire s_axil_wready_early = !m_axil_wvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
m_axil_wvalid_next = m_axil_wvalid_reg;
|
||||
|
||||
store_axil_w_input_to_output = 1'b0;
|
||||
|
||||
if (s_axil_wready_reg) begin
|
||||
m_axil_wvalid_next = s_axil_wr.wvalid;
|
||||
store_axil_w_input_to_output = 1'b1;
|
||||
end else if (m_axil_wr.wready) begin
|
||||
m_axil_wvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
s_axil_wready_reg <= s_axil_wready_early;
|
||||
m_axil_wvalid_reg <= m_axil_wvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_w_input_to_output) begin
|
||||
m_axil_wdata_reg <= s_axil_wr.wdata;
|
||||
m_axil_wstrb_reg <= s_axil_wr.wstrb;
|
||||
m_axil_wuser_reg <= s_axil_wr.wuser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
s_axil_wready_reg <= 1'b0;
|
||||
m_axil_wvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass W channel
|
||||
assign m_axil_wr.wdata = s_axil_wr.wdata;
|
||||
assign m_axil_wr.wstrb = s_axil_wr.wstrb;
|
||||
assign m_axil_wr.wuser = WUSER_EN ? s_axil_wr.wuser : '0;
|
||||
assign m_axil_wr.wvalid = s_axil_wr.wvalid;
|
||||
assign s_axil_wr.wready = m_axil_wr.wready;
|
||||
|
||||
end
|
||||
|
||||
// B channel
|
||||
|
||||
if (B_REG_TYPE > 1) begin
|
||||
// skid buffer, no bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axil_bready_reg = 1'b0;
|
||||
|
||||
logic [1:0] s_axil_bresp_reg = 2'b0;
|
||||
logic [BUSER_W-1:0] s_axil_buser_reg = '0;
|
||||
logic s_axil_bvalid_reg = 1'b0, s_axil_bvalid_next;
|
||||
|
||||
logic [1:0] temp_s_axil_bresp_reg = 2'b0;
|
||||
logic [BUSER_W-1:0] temp_s_axil_buser_reg = '0;
|
||||
logic temp_s_axil_bvalid_reg = 1'b0, temp_s_axil_bvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_b_input_to_output;
|
||||
logic store_axil_b_input_to_temp;
|
||||
logic store_axil_b_temp_to_output;
|
||||
|
||||
assign m_axil_wr.bready = m_axil_bready_reg;
|
||||
|
||||
assign s_axil_wr.bresp = s_axil_bresp_reg;
|
||||
assign s_axil_wr.buser = BUSER_EN ? s_axil_buser_reg : '0;
|
||||
assign s_axil_wr.bvalid = s_axil_bvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
||||
wire m_axil_bready_early = s_axil_wr.bready || (!temp_s_axil_bvalid_reg && (!s_axil_bvalid_reg || !m_axil_wr.bvalid));
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axil_bvalid_next = s_axil_bvalid_reg;
|
||||
temp_s_axil_bvalid_next = temp_s_axil_bvalid_reg;
|
||||
|
||||
store_axil_b_input_to_output = 1'b0;
|
||||
store_axil_b_input_to_temp = 1'b0;
|
||||
store_axil_b_temp_to_output = 1'b0;
|
||||
|
||||
if (m_axil_bready_reg) begin
|
||||
// input is ready
|
||||
if (s_axil_wr.bready || !s_axil_bvalid_reg) begin
|
||||
// output is ready or currently not valid, transfer data to output
|
||||
s_axil_bvalid_next = m_axil_wr.bvalid;
|
||||
store_axil_b_input_to_output = 1'b1;
|
||||
end else begin
|
||||
// output is not ready, store input in temp
|
||||
temp_s_axil_bvalid_next = m_axil_wr.bvalid;
|
||||
store_axil_b_input_to_temp = 1'b1;
|
||||
end
|
||||
end else if (s_axil_wr.bready) begin
|
||||
// input is not ready, but output is ready
|
||||
s_axil_bvalid_next = temp_s_axil_bvalid_reg;
|
||||
temp_s_axil_bvalid_next = 1'b0;
|
||||
store_axil_b_temp_to_output = 1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axil_bready_reg <= m_axil_bready_early;
|
||||
s_axil_bvalid_reg <= s_axil_bvalid_next;
|
||||
temp_s_axil_bvalid_reg <= temp_s_axil_bvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_b_input_to_output) begin
|
||||
s_axil_bresp_reg <= m_axil_wr.bresp;
|
||||
s_axil_buser_reg <= m_axil_wr.buser;
|
||||
end else if (store_axil_b_temp_to_output) begin
|
||||
s_axil_bresp_reg <= temp_s_axil_bresp_reg;
|
||||
s_axil_buser_reg <= temp_s_axil_buser_reg;
|
||||
end
|
||||
|
||||
if (store_axil_b_input_to_temp) begin
|
||||
temp_s_axil_bresp_reg <= m_axil_wr.bresp;
|
||||
temp_s_axil_buser_reg <= m_axil_wr.buser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axil_bready_reg <= 1'b0;
|
||||
s_axil_bvalid_reg <= 1'b0;
|
||||
temp_s_axil_bvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else if (B_REG_TYPE == 1) begin
|
||||
// simple register, inserts bubble cycles
|
||||
|
||||
// datapath registers
|
||||
logic m_axil_bready_reg = 1'b0;
|
||||
|
||||
logic [1:0] s_axil_bresp_reg = 2'b0;
|
||||
logic [BUSER_W-1:0] s_axil_buser_reg = '0;
|
||||
logic s_axil_bvalid_reg = 1'b0, s_axil_bvalid_next;
|
||||
|
||||
// datapath control
|
||||
logic store_axil_b_input_to_output;
|
||||
|
||||
assign m_axil_wr.bready = m_axil_bready_reg;
|
||||
|
||||
assign s_axil_wr.bresp = s_axil_bresp_reg;
|
||||
assign s_axil_wr.buser = BUSER_EN ? s_axil_buser_reg : '0;
|
||||
assign s_axil_wr.bvalid = s_axil_bvalid_reg;
|
||||
|
||||
// enable ready input next cycle if output buffer will be empty
|
||||
wire m_axil_bready_early = !s_axil_bvalid_next;
|
||||
|
||||
always_comb begin
|
||||
// transfer sink ready state to source
|
||||
s_axil_bvalid_next = s_axil_bvalid_reg;
|
||||
|
||||
store_axil_b_input_to_output = 1'b0;
|
||||
|
||||
if (m_axil_bready_reg) begin
|
||||
s_axil_bvalid_next = m_axil_wr.bvalid;
|
||||
store_axil_b_input_to_output = 1'b1;
|
||||
end else if (s_axil_wr.bready) begin
|
||||
s_axil_bvalid_next = 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
m_axil_bready_reg <= m_axil_bready_early;
|
||||
s_axil_bvalid_reg <= s_axil_bvalid_next;
|
||||
|
||||
// datapath
|
||||
if (store_axil_b_input_to_output) begin
|
||||
s_axil_bresp_reg <= m_axil_wr.bresp;
|
||||
s_axil_buser_reg <= m_axil_wr.buser;
|
||||
end
|
||||
|
||||
if (rst) begin
|
||||
m_axil_bready_reg <= 1'b0;
|
||||
s_axil_bvalid_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
end else begin
|
||||
|
||||
// bypass B channel
|
||||
assign s_axil_wr.bresp = m_axil_wr.bresp;
|
||||
assign s_axil_wr.buser = BUSER_EN ? m_axil_wr.buser : '0;
|
||||
assign s_axil_wr.bvalid = m_axil_wr.bvalid;
|
||||
assign m_axil_wr.bready = s_axil_wr.bready;
|
||||
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
`resetall
|
||||
Reference in New Issue
Block a user