Reorganize repository

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-05-18 12:25:59 -07:00
parent 8cdae180a1
commit 66b53d98a2
690 changed files with 2314 additions and 1581 deletions

View File

@@ -0,0 +1,305 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Statistics collector
*/
module taxi_stats_collect #
(
// Channel count
parameter CNT = 8,
// Increment width (bits)
parameter INC_W = 8,
// Base statistic ID
parameter ID_BASE = 0,
// Statistics counter update period (cycles)
parameter UPDATE_PERIOD = 1024,
// Enable strings
parameter logic STR_EN = 1'b0,
// Common prefix string (8 characters)
parameter logic [8*8-1:0] PREFIX_STR = "BLK"
)
(
input wire logic clk,
input wire logic rst,
/*
* Increment inputs
*/
input wire logic [INC_W-1:0] stat_inc[CNT],
input wire logic stat_valid[CNT] = '{CNT{1'b1}},
input wire logic [8*8-1:0] stat_str[CNT] = '{CNT{'0}},
/*
* Statistics increment output
*/
taxi_axis_if.src m_axis_stat,
/*
* Control inputs
*/
input wire logic gate = 1'b1,
input wire logic update = 1'b0
);
// check configuration
if (STR_EN) begin
if (!m_axis_stat.USER_EN)
$fatal(0, "Error: statistics strings requires tuser (instance %m)");
if (m_axis_stat.DATA_W < 16)
$fatal(0, "Error: statistics strings requires tdata width of at least 16 (instance %m)");
end
if (ID_BASE+CNT > 2**m_axis_stat.ID_W)
$fatal(0, "Error: insufficient tid width (instance %m)");
localparam STAT_INC_W = m_axis_stat.DATA_W;
localparam STAT_ID_W = m_axis_stat.ID_W;
localparam CNT_W = $clog2(CNT);
localparam PERIOD_CNT_W = $clog2(UPDATE_PERIOD+1);
localparam ACC_W = INC_W+CNT_W+1;
localparam [0:0]
STATE_READ = 1'd0,
STATE_WRITE = 1'd1;
logic [0:0] state_reg = STATE_READ, state_next;
logic [STAT_INC_W-1:0] m_axis_stat_tdata_reg = '0, m_axis_stat_tdata_next;
logic [STAT_ID_W-1:0] m_axis_stat_tid_reg = '0, m_axis_stat_tid_next;
logic m_axis_stat_tvalid_reg = 1'b0, m_axis_stat_tvalid_next;
logic m_axis_stat_tuser_reg = 1'b0, m_axis_stat_tuser_next;
logic [CNT_W-1:0] count_reg = '0, count_next;
logic [PERIOD_CNT_W-1:0] update_period_reg = PERIOD_CNT_W'(UPDATE_PERIOD), update_period_next;
logic zero_reg = 1'b1, zero_next;
logic update_req_reg = 1'b0, update_req_next;
logic update_reg = 1'b0, update_next;
logic [CNT-1:0] update_shift_reg = '0, update_shift_next;
logic [ACC_W-1:0] ch_reg = '0, ch_next;
function automatic [8*6-1:0] pack_str(logic [8*8-1:0] str);
// determine length
integer j = 0;
for (integer i = 0; i < 8; i = i + 1) begin
if (str[i*8 +: 8] != 0) begin
j = i;
end
end
// convert to 6 bit and pack
pack_str = '0;
for (integer i = 0; i < 8 && i <= j; i = i + 1) begin
pack_str[i*6 +: 6] = {str[8*(j-i) + 6], str[8*(j-i) +: 5]};
end
endfunction
logic [3:0][11:0] prefix_str_rom = pack_str(PREFIX_STR);
logic [CNT*4-1:0][11:0] str_rom;
logic [CNT_W-1:0] str_sel_reg = '0, str_sel_next;
logic str_prfx_reg = 1'b0, str_prfx_next;
logic [1:0] str_ptr_reg = '0, str_ptr_next;
logic str_update_reg = 1'b0, str_update_next;
for (genvar n = 0; n < CNT; n = n + 1) begin
assign str_rom[n*4 +: 4] = pack_str(stat_str[n]);
end
wire [ACC_W-1:0] acc_int[CNT];
logic [CNT-1:0] acc_clear;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [STAT_INC_W-1:0] mem_reg[CNT];
logic [STAT_INC_W-1:0] mem_rd_data_reg = '0;
logic mem_rd_en;
logic mem_wr_en;
logic [STAT_INC_W-1:0] mem_wr_data;
assign m_axis_stat.tdata = m_axis_stat_tdata_reg;
assign m_axis_stat.tkeep = 1'b1;
assign m_axis_stat.tstrb = m_axis_stat.tkeep;
assign m_axis_stat.tvalid = m_axis_stat_tvalid_reg;
assign m_axis_stat.tlast = 1'b1;
assign m_axis_stat.tid = m_axis_stat_tid_reg;
assign m_axis_stat.tdest = '0;
assign m_axis_stat.tuser = STR_EN ? m_axis_stat_tuser_reg : '0;
for (genvar n = 0; n < CNT; n = n + 1) begin : ch
logic [ACC_W-1:0] acc_reg = '0;
assign acc_int[n] = acc_reg;
always_ff @(posedge clk) begin
if (acc_clear[n]) begin
if (stat_valid[n] && gate) begin
acc_reg <= ACC_W'(stat_inc[n]);
end else begin
acc_reg <= '0;
end
end else begin
if (stat_valid[n] && gate) begin
acc_reg <= acc_reg + ACC_W'(stat_inc[n]);
end
end
if (rst) begin
acc_reg <= '0;
end
end
end
always_comb begin
state_next = STATE_READ;
m_axis_stat_tdata_next = m_axis_stat_tdata_reg;
m_axis_stat_tid_next = m_axis_stat_tid_reg;
m_axis_stat_tvalid_next = m_axis_stat_tvalid_reg && !m_axis_stat.tready;
m_axis_stat_tuser_next = m_axis_stat_tuser_reg;
count_next = count_reg;
update_period_next = update_period_reg;
zero_next = zero_reg;
update_req_next = update_req_reg;
update_next = update_reg;
update_shift_next = update_shift_reg;
ch_next = ch_reg;
str_sel_next = str_sel_reg;
str_prfx_next = str_prfx_reg;
str_ptr_next = str_ptr_reg;
str_update_next = str_update_reg;
acc_clear = '0;
mem_rd_en = 1'b0;
mem_wr_en = 1'b0;
mem_wr_data = mem_rd_data_reg + STAT_INC_W'(ch_reg);
if (!m_axis_stat_tvalid_reg) begin
m_axis_stat_tdata_next = mem_rd_data_reg + STAT_INC_W'(ch_reg);
m_axis_stat_tid_next = STAT_ID_W'(count_reg+ID_BASE);
end
case (state_reg)
STATE_READ: begin
acc_clear[count_reg] = 1'b1;
ch_next = acc_int[count_reg];
mem_rd_en = 1'b1;
state_next = STATE_WRITE;
end
STATE_WRITE: begin
mem_wr_en = 1'b1;
update_shift_next = {update_reg || update_shift_reg[0], update_shift_reg[CNT-1:1]};
if (zero_reg) begin
mem_wr_data = STAT_INC_W'(ch_reg);
end else if (!m_axis_stat_tvalid_reg && (update_reg || update_shift_reg[0])) begin
update_shift_next[CNT-1] = 1'b0;
mem_wr_data = '0;
m_axis_stat_tdata_next = mem_rd_data_reg + STAT_INC_W'(ch_reg);
m_axis_stat_tid_next = STAT_ID_W'(count_reg+ID_BASE);
m_axis_stat_tvalid_next = mem_rd_data_reg != 0 || ch_reg != 0;
m_axis_stat_tuser_next = 1'b0;
end else begin
mem_wr_data = mem_rd_data_reg + STAT_INC_W'(ch_reg);
if (STR_EN && !m_axis_stat_tvalid_reg && str_update_reg && count_reg == str_sel_reg) begin
str_update_next = 1'b0;
m_axis_stat_tdata_next[15:4] = str_prfx_reg ? str_rom[{str_sel_reg, str_ptr_reg}] : prefix_str_rom[str_ptr_reg];
m_axis_stat_tdata_next[3:0] = {1'b0, str_prfx_reg, str_ptr_reg};
m_axis_stat_tid_next = STAT_ID_W'(count_reg+ID_BASE);
m_axis_stat_tvalid_next = 1'b1;
m_axis_stat_tuser_next = 1'b1;
str_ptr_next = str_ptr_reg + 1;
if (str_ptr_reg == 2'b11) begin
str_prfx_next = !str_prfx_reg;
if (str_prfx_reg) begin
str_sel_next = str_sel_reg + 1;
end
end
end
end
if (count_reg == CNT_W'(CNT-1)) begin
zero_next = 1'b0;
update_req_next = 1'b0;
update_next = update_req_reg;
if (update_req_reg) begin
str_update_next = 1'b1;
end
count_next = '0;
end else begin
count_next = count_reg + 1;
end
state_next = STATE_READ;
end
endcase
if (update_period_reg == 0 || update) begin
update_req_next = 1'b1;
update_period_next = PERIOD_CNT_W'(UPDATE_PERIOD);
end else begin
update_period_next = update_period_reg - 1;
end
end
always_ff @(posedge clk) begin
state_reg <= state_next;
m_axis_stat_tdata_reg <= m_axis_stat_tdata_next;
m_axis_stat_tid_reg <= m_axis_stat_tid_next;
m_axis_stat_tvalid_reg <= m_axis_stat_tvalid_next;
m_axis_stat_tuser_reg <= m_axis_stat_tuser_next;
count_reg <= count_next;
update_period_reg <= update_period_next;
zero_reg <= zero_next;
update_req_reg <= update_req_next;
update_reg <= update_next;
update_shift_reg <= update_shift_next;
ch_reg <= ch_next;
str_sel_reg <= str_sel_next;
str_prfx_reg <= str_prfx_next;
str_ptr_reg <= str_ptr_next;
str_update_reg <= str_update_next;
if (mem_wr_en) begin
mem_reg[count_reg] <= mem_wr_data;
end else if (mem_rd_en) begin
mem_rd_data_reg <= mem_reg[count_reg];
end
if (rst) begin
state_reg <= STATE_READ;
m_axis_stat_tvalid_reg <= 1'b0;
count_reg <= '0;
update_period_reg <= PERIOD_CNT_W'(UPDATE_PERIOD);
zero_reg <= 1'b1;
update_req_reg <= 1'b0;
update_reg <= 1'b0;
str_sel_reg <= '0;
str_prfx_reg <= 1'b0;
str_ptr_reg <= '0;
str_update_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,268 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Statistics counter
*/
module taxi_stats_counter #
(
// Statistics counter (bits)
parameter STAT_COUNT_W = 32,
// Pipeline length
parameter PIPELINE = 2
)
(
input wire logic clk,
input wire logic rst,
/*
* Statistics increment input
*/
taxi_axis_if.snk s_axis_stat,
/*
* AXI Lite register interface
*/
taxi_axil_if.wr_slv s_axil_wr,
taxi_axil_if.rd_slv s_axil_rd
);
localparam STAT_INC_W = s_axis_stat.DATA_W;
localparam STAT_ID_W = s_axis_stat.ID_W;
localparam AXIL_ADDR_W = s_axil_rd.ADDR_W;
localparam AXIL_DATA_W = s_axil_rd.DATA_W;
localparam ID_SHIFT = $clog2(((AXIL_DATA_W > STAT_COUNT_W ? AXIL_DATA_W : STAT_COUNT_W)+7)/8);
localparam WORD_SELECT_SHIFT = $clog2(AXIL_DATA_W/8);
localparam WORD_SELECT_W = STAT_COUNT_W > AXIL_DATA_W ? $clog2((STAT_COUNT_W+7)/8) - $clog2(AXIL_DATA_W/8) : 1;
// check configuration
if (AXIL_ADDR_W < STAT_ID_W+ID_SHIFT)
$fatal(0, "Error: AXI lite address width too narrow (instance %m)");
if (PIPELINE < 2)
$fatal(0, "Error: PIPELINE must be at least 2 (instance %m)");
logic init_reg = 1'b1, init_next;
logic [STAT_ID_W-1:0] init_ptr_reg = 0, init_ptr_next;
logic op_acc_pipe_hazard;
logic stage_active;
logic [PIPELINE-1:0] op_axil_read_pipe_reg = 0, op_axil_read_pipe_next;
logic [PIPELINE-1:0] op_acc_pipe_reg = 0, op_acc_pipe_next;
logic [STAT_ID_W-1:0] mem_addr_pipeline_reg[PIPELINE], mem_addr_pipeline_next[PIPELINE];
logic [WORD_SELECT_W-1:0] axil_shift_pipeline_reg[PIPELINE], axil_shift_pipeline_next[PIPELINE];
logic [STAT_INC_W-1:0] stat_inc_pipeline_reg[PIPELINE], stat_inc_pipeline_next[PIPELINE];
logic s_axis_stat_tready_reg = 1'b0, s_axis_stat_tready_next;
logic s_axil_awready_reg = 0, s_axil_awready_next;
logic s_axil_wready_reg = 0, s_axil_wready_next;
logic s_axil_bvalid_reg = 0, s_axil_bvalid_next;
logic s_axil_arready_reg = 0, s_axil_arready_next;
logic [AXIL_DATA_W-1:0] s_axil_rdata_reg = 0, s_axil_rdata_next;
logic s_axil_rvalid_reg = 0, s_axil_rvalid_next;
(* ramstyle = "no_rw_check" *)
logic [STAT_COUNT_W-1:0] mem[2**STAT_ID_W];
logic [STAT_ID_W-1:0] mem_rd_addr;
logic [STAT_ID_W-1:0] mem_wr_addr;
logic [STAT_COUNT_W-1:0] mem_wr_data;
logic mem_wr_en;
logic [STAT_COUNT_W-1:0] mem_read_data_reg = 0;
logic [STAT_COUNT_W-1:0] mem_read_data_pipeline_reg[PIPELINE-1:1];
assign s_axis_stat.tready = s_axis_stat_tready_reg;
assign s_axil_wr.awready = s_axil_awready_reg;
assign s_axil_wr.wready = s_axil_wready_reg;
assign s_axil_wr.bresp = 2'b00;
assign s_axil_wr.bvalid = s_axil_bvalid_reg;
assign s_axil_rd.arready = s_axil_arready_reg;
assign s_axil_rd.rdata = s_axil_rdata_reg;
assign s_axil_rd.rresp = 2'b00;
assign s_axil_rd.rvalid = s_axil_rvalid_reg;
wire [STAT_ID_W-1:0] s_axil_araddr_id = STAT_ID_W'(s_axil_rd.araddr >> ID_SHIFT);
wire [WORD_SELECT_W-1:0] s_axil_araddr_shift = WORD_SELECT_W'(s_axil_rd.araddr >> WORD_SELECT_SHIFT);
initial begin
// break up loop to work around iteration termination
for (integer i = 0; i < 2**STAT_ID_W; i = i + 2**(STAT_ID_W/2)) begin
for (integer j = i; j < i + 2**(STAT_ID_W/2); j = j + 1) begin
mem[j] = 0;
end
end
for (integer i = 0; i < PIPELINE; i = i + 1) begin
mem_addr_pipeline_reg[i] = 0;
axil_shift_pipeline_reg[i] = 0;
stat_inc_pipeline_reg[i] = 0;
end
end
always_comb begin
init_next = init_reg;
init_ptr_next = init_ptr_reg;
op_axil_read_pipe_next = PIPELINE'({op_axil_read_pipe_reg, 1'b0});
op_acc_pipe_next = PIPELINE'({op_acc_pipe_reg, 1'b0});
mem_addr_pipeline_next[0] = 0;
axil_shift_pipeline_next[0] = 0;
stat_inc_pipeline_next[0] = 0;
for (integer j = 1; j < PIPELINE; j = j + 1) begin
mem_addr_pipeline_next[j] = mem_addr_pipeline_reg[j-1];
axil_shift_pipeline_next[j] = axil_shift_pipeline_reg[j-1];
stat_inc_pipeline_next[j] = stat_inc_pipeline_reg[j-1];
end
s_axis_stat_tready_next = 1'b0;
s_axil_awready_next = 1'b0;
s_axil_wready_next = 1'b0;
s_axil_bvalid_next = s_axil_bvalid_reg && !s_axil_wr.bready;
s_axil_arready_next = 1'b0;
s_axil_rdata_next = s_axil_rdata_reg;
s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rd.rready;
mem_rd_addr = 0;
mem_wr_addr = mem_addr_pipeline_reg[PIPELINE-1];
mem_wr_data = mem_read_data_pipeline_reg[PIPELINE-1] + STAT_COUNT_W'(stat_inc_pipeline_reg[PIPELINE-1]);
mem_wr_en = 0;
op_acc_pipe_hazard = 1'b0;
stage_active = 1'b0;
for (integer j = 0; j < PIPELINE; j = j + 1) begin
stage_active = op_axil_read_pipe_reg[j] || op_acc_pipe_reg[j];
op_acc_pipe_hazard = op_acc_pipe_hazard || (stage_active && mem_addr_pipeline_reg[j] == s_axis_stat.tid);
end
// discard writes
if (s_axil_wr.awvalid && s_axil_wr.wvalid && (!s_axil_wr.bvalid || s_axil_wr.bready) && (!s_axil_wr.awready && !s_axil_wr.wready)) begin
s_axil_awready_next = 1'b1;
s_axil_wready_next = 1'b1;
s_axil_bvalid_next = 1'b1;
end
// pipeline stage 0 - accept request
if (init_reg) begin
// zero all counters
init_ptr_next = init_ptr_reg + 1;
mem_wr_addr = init_ptr_reg;
mem_wr_data = 0;
mem_wr_en = 1'b1;
if (&init_ptr_reg) begin
init_next = 1'b0;
end
end else if (s_axil_rd.arvalid && (!s_axil_rd.rvalid || s_axil_rd.rready) && op_axil_read_pipe_reg == 0) begin
// AXIL read
op_axil_read_pipe_next[0] = 1'b1;
s_axil_arready_next = 1'b1;
mem_rd_addr = s_axil_araddr_id;
mem_addr_pipeline_next[0] = s_axil_araddr_id;
axil_shift_pipeline_next[0] = s_axil_araddr_shift;
end else if (s_axis_stat.tvalid && !s_axis_stat.tready && !op_acc_pipe_hazard) begin
// accumulate
op_acc_pipe_next[0] = !s_axis_stat.USER_EN || !s_axis_stat.tuser;
s_axis_stat_tready_next = 1'b1;
stat_inc_pipeline_next[0] = s_axis_stat.tdata;
mem_rd_addr = s_axis_stat.tid;
mem_addr_pipeline_next[0] = s_axis_stat.tid;
end
// read complete, perform operation
if (op_acc_pipe_reg[PIPELINE-1]) begin
// accumulate
mem_wr_addr = mem_addr_pipeline_reg[PIPELINE-1];
mem_wr_data = mem_read_data_pipeline_reg[PIPELINE-1] + STAT_COUNT_W'(stat_inc_pipeline_reg[PIPELINE-1]);
mem_wr_en = 1'b1;
end else if (op_axil_read_pipe_reg[PIPELINE-1]) begin
// AXIL read
s_axil_rvalid_next = 1'b1;
s_axil_rdata_next = 0;
if (STAT_COUNT_W > AXIL_DATA_W) begin
s_axil_rdata_next = AXIL_DATA_W'(mem_read_data_pipeline_reg[PIPELINE-1] >> axil_shift_pipeline_reg[PIPELINE-1]*AXIL_DATA_W);
end else begin
s_axil_rdata_next = AXIL_DATA_W'(mem_read_data_pipeline_reg[PIPELINE-1]);
end
end
end
always_ff @(posedge clk) begin
init_reg <= init_next;
init_ptr_reg <= init_ptr_next;
op_axil_read_pipe_reg <= op_axil_read_pipe_next;
op_acc_pipe_reg <= op_acc_pipe_next;
s_axis_stat_tready_reg <= s_axis_stat_tready_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
s_axil_bvalid_reg <= s_axil_bvalid_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rdata_reg <= s_axil_rdata_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
for (integer i = 0; i < PIPELINE; i = i + 1) begin
mem_addr_pipeline_reg[i] <= mem_addr_pipeline_next[i];
axil_shift_pipeline_reg[i] <= axil_shift_pipeline_next[i];
stat_inc_pipeline_reg[i] <= stat_inc_pipeline_next[i];
end
if (mem_wr_en) begin
mem[mem_wr_addr] <= mem_wr_data;
end
mem_read_data_reg <= mem[mem_rd_addr];
mem_read_data_pipeline_reg[1] <= mem_read_data_reg;
for (integer i = 2; i < PIPELINE; i = i + 1) begin
mem_read_data_pipeline_reg[i] <= mem_read_data_pipeline_reg[i-1];
end
if (rst) begin
init_reg <= 1'b1;
init_ptr_reg <= 0;
op_axil_read_pipe_reg <= 0;
op_acc_pipe_reg <= 0;
s_axis_stat_tready_reg <= 1'b0;
s_axil_awready_reg <= 1'b0;
s_axil_wready_reg <= 1'b0;
s_axil_bvalid_reg <= 1'b0;
s_axil_arready_reg <= 1'b0;
s_axil_rvalid_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,241 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Statistics strings collector (full)
*/
module taxi_stats_strings_full #
(
// Pipeline length
parameter PIPELINE = 2
)
(
input wire logic clk,
input wire logic rst,
/*
* Statistics increment input
*/
taxi_axis_if.mon s_axis_stat,
/*
* AXI Lite register interface
*/
taxi_axil_if.wr_slv s_axil_wr,
taxi_axil_if.rd_slv s_axil_rd
);
// localparam STAT_INC_W = s_axis_stat.DATA_W;
localparam STAT_ID_W = s_axis_stat.ID_W;
localparam AXIL_ADDR_W = s_axil_rd.ADDR_W;
localparam AXIL_DATA_W = s_axil_rd.DATA_W;
localparam ID_SHIFT = $clog2(((AXIL_DATA_W > 128 ? AXIL_DATA_W : 128)+7)/8);
localparam WORD_SELECT_SHIFT = $clog2(AXIL_DATA_W/8);
localparam WORD_SELECT_W = 128 > AXIL_DATA_W ? $clog2((128+7)/8) - $clog2(AXIL_DATA_W/8) : 1;
// check configuration
if (AXIL_ADDR_W < STAT_ID_W+ID_SHIFT)
$fatal(0, "Error: AXI lite address width too narrow (instance %m)");
if (PIPELINE < 2)
$fatal(0, "Error: PIPELINE must be at least 2 (instance %m)");
logic init_reg = 1'b1, init_next;
logic [STAT_ID_W-1:0] init_ptr_reg = 0, init_ptr_next;
logic op_acc_pipe_hazard;
logic stage_active;
logic [PIPELINE-1:0] op_axil_read_pipe_reg = 0, op_axil_read_pipe_next;
logic [STAT_ID_W-1:0] mem_addr_pipeline_reg[PIPELINE], mem_addr_pipeline_next[PIPELINE];
logic [WORD_SELECT_W-1:0] axil_shift_pipeline_reg[PIPELINE], axil_shift_pipeline_next[PIPELINE];
logic s_axil_awready_reg = 0, s_axil_awready_next;
logic s_axil_wready_reg = 0, s_axil_wready_next;
logic s_axil_bvalid_reg = 0, s_axil_bvalid_next;
logic s_axil_arready_reg = 0, s_axil_arready_next;
logic [AXIL_DATA_W-1:0] s_axil_rdata_reg = 0, s_axil_rdata_next;
logic s_axil_rvalid_reg = 0, s_axil_rvalid_next;
(* ramstyle = "no_rw_check" *)
logic [127:0] mem[2**STAT_ID_W];
logic [STAT_ID_W-1:0] mem_rd_addr;
logic [STAT_ID_W-1:0] mem_wr_addr;
logic [127:0] mem_wr_data;
logic [15:0] mem_wr_strb;
logic mem_wr_en;
logic [127:0] mem_read_data_reg = 0;
logic [127:0] mem_read_data_pipeline_reg[PIPELINE-1:1];
assign s_axil_wr.awready = s_axil_awready_reg;
assign s_axil_wr.wready = s_axil_wready_reg;
assign s_axil_wr.bresp = 2'b00;
assign s_axil_wr.bvalid = s_axil_bvalid_reg;
assign s_axil_rd.arready = s_axil_arready_reg;
assign s_axil_rd.rdata = s_axil_rdata_reg;
assign s_axil_rd.rresp = 2'b00;
assign s_axil_rd.rvalid = s_axil_rvalid_reg;
wire [STAT_ID_W-1:0] s_axil_araddr_id = STAT_ID_W'(s_axil_rd.araddr >> ID_SHIFT);
wire [WORD_SELECT_W-1:0] s_axil_araddr_shift = WORD_SELECT_W'(s_axil_rd.araddr >> WORD_SELECT_SHIFT);
initial begin
// break up loop to work around iteration termination
for (integer i = 0; i < 2**STAT_ID_W; i = i + 2**(STAT_ID_W/2)) begin
for (integer j = i; j < i + 2**(STAT_ID_W/2); j = j + 1) begin
mem[j] = 0;
end
end
for (integer i = 0; i < PIPELINE; i = i + 1) begin
mem_addr_pipeline_reg[i] = 0;
axil_shift_pipeline_reg[i] = 0;
end
end
always_comb begin
init_next = init_reg;
init_ptr_next = init_ptr_reg;
op_axil_read_pipe_next = PIPELINE'({op_axil_read_pipe_reg, 1'b0});
mem_addr_pipeline_next[0] = 0;
axil_shift_pipeline_next[0] = 0;
for (integer j = 1; j < PIPELINE; j = j + 1) begin
mem_addr_pipeline_next[j] = mem_addr_pipeline_reg[j-1];
axil_shift_pipeline_next[j] = axil_shift_pipeline_reg[j-1];
end
s_axil_awready_next = 1'b0;
s_axil_wready_next = 1'b0;
s_axil_bvalid_next = s_axil_bvalid_reg && !s_axil_wr.bready;
s_axil_arready_next = 1'b0;
s_axil_rdata_next = s_axil_rdata_reg;
s_axil_rvalid_next = s_axil_rvalid_reg && !s_axil_rd.rready;
mem_rd_addr = s_axil_araddr_id;
mem_wr_addr = s_axis_stat.tid;
mem_wr_data = {8{1'b0, s_axis_stat.tdata[15], ~s_axis_stat.tdata[15], s_axis_stat.tdata[14:10], 1'b0, s_axis_stat.tdata[9], ~s_axis_stat.tdata[9], s_axis_stat.tdata[8:4]}};
mem_wr_strb = '0;
mem_wr_strb[s_axis_stat.tdata[2:0]*2 +: 2] = 2'b11;
mem_wr_en = 0;
// discard writes
if (s_axil_wr.awvalid && s_axil_wr.wvalid && (!s_axil_wr.bvalid || s_axil_wr.bready) && (!s_axil_wr.awready && !s_axil_wr.wready)) begin
s_axil_awready_next = 1'b1;
s_axil_wready_next = 1'b1;
s_axil_bvalid_next = 1'b1;
end
// store string data
if (init_reg) begin
// zero strings
init_ptr_next = init_ptr_reg + 1;
mem_wr_addr = init_ptr_reg;
mem_wr_data = '0;
mem_wr_strb = '1;
mem_wr_en = 1'b1;
if (&init_ptr_reg) begin
init_next = 1'b0;
end
end else if (s_axis_stat.tvalid && s_axis_stat.tready && s_axis_stat.tuser) begin
// store string data
mem_wr_addr = s_axis_stat.tid;
mem_wr_data = {8{1'b0, s_axis_stat.tdata[15], ~s_axis_stat.tdata[15], s_axis_stat.tdata[14:10], 1'b0, s_axis_stat.tdata[9], ~s_axis_stat.tdata[9], s_axis_stat.tdata[8:4]}};
mem_wr_strb[s_axis_stat.tdata[2:0]*2 +: 2] = 2'b11;
mem_wr_en = 1'b1;
end
// pipeline stage 0 - accept request
if (s_axil_rd.arvalid && (!s_axil_rd.rvalid || s_axil_rd.rready) && op_axil_read_pipe_reg == 0) begin
// AXIL read
op_axil_read_pipe_next[0] = 1'b1;
s_axil_arready_next = 1'b1;
mem_rd_addr = s_axil_araddr_id;
mem_addr_pipeline_next[0] = s_axil_araddr_id;
axil_shift_pipeline_next[0] = s_axil_araddr_shift;
end
// read complete, perform operation
if (op_axil_read_pipe_reg[PIPELINE-1]) begin
// AXIL read
s_axil_rvalid_next = 1'b1;
s_axil_rdata_next = 0;
if (128 > AXIL_DATA_W) begin
s_axil_rdata_next = AXIL_DATA_W'(mem_read_data_pipeline_reg[PIPELINE-1] >> axil_shift_pipeline_reg[PIPELINE-1]*AXIL_DATA_W);
end else begin
s_axil_rdata_next = AXIL_DATA_W'(mem_read_data_pipeline_reg[PIPELINE-1]);
end
end
end
always_ff @(posedge clk) begin
init_reg <= init_next;
init_ptr_reg <= init_ptr_next;
op_axil_read_pipe_reg <= op_axil_read_pipe_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
s_axil_bvalid_reg <= s_axil_bvalid_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rdata_reg <= s_axil_rdata_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
for (integer i = 0; i < PIPELINE; i = i + 1) begin
mem_addr_pipeline_reg[i] <= mem_addr_pipeline_next[i];
axil_shift_pipeline_reg[i] <= axil_shift_pipeline_next[i];
end
if (mem_wr_en) begin
for (integer i = 0; i < 16; i = i + 1) begin
if (mem_wr_strb[i]) begin
mem[mem_wr_addr][i*8 +: 8] <= mem_wr_data[i*8 +: 8];
end
end
end
mem_read_data_reg <= mem[mem_rd_addr];
mem_read_data_pipeline_reg[1] <= mem_read_data_reg;
for (integer i = 2; i < PIPELINE; i = i + 1) begin
mem_read_data_pipeline_reg[i] <= mem_read_data_pipeline_reg[i-1];
end
if (rst) begin
init_reg <= 1'b1;
init_ptr_reg <= 0;
op_axil_read_pipe_reg <= 0;
s_axil_awready_reg <= 1'b0;
s_axil_wready_reg <= 1'b0;
s_axil_bvalid_reg <= 1'b0;
s_axil_arready_reg <= 1'b0;
s_axil_rvalid_reg <= 1'b0;
end
end
endmodule
`resetall