axis: Add AXI stream async FIFO module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-06 00:46:39 -08:00
parent a354377da9
commit 69e5ae8545
5 changed files with 1972 additions and 0 deletions

View File

@@ -0,0 +1,903 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream asynchronous FIFO
*/
module taxi_axis_async_fifo #
(
// FIFO depth in words
// KEEP_W words per cycle if KEEP_EN set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// FIFO ramstyle attribute
parameter FIFO_RAMSTYLE = "auto",
// number of RAM pipeline registers
parameter RAM_PIPELINE = 1,
// use output FIFO
// When set, the RAM read enable and pipeline clock enables are removed
parameter logic OUTPUT_FIFO_EN = 1'b0,
// output FIFO ramstyle attribute
parameter OUTPUT_FIFO_RAMSTYLE = "distributed",
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_EN set
parameter logic FRAME_FIFO = 1'b0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames larger than FIFO
// Requires FRAME_FIFO set
parameter logic DROP_OVERSIZE_FRAME = FRAME_FIFO,
// Drop frames marked bad
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter logic DROP_BAD_FRAME = 1'b0,
// Drop incoming frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter logic DROP_WHEN_FULL = 1'b0,
// Mark incoming frames as bad frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO to be clear
parameter logic MARK_WHEN_FULL = 1'b0,
// Enable pause request input
parameter logic PAUSE_EN = 1'b0,
// Pause between frames
parameter logic FRAME_PAUSE = FRAME_FIFO
)
(
/*
* AXI4-Stream input (sink)
*/
input wire logic s_clk,
input wire logic s_rst,
taxi_axis_if.snk s_axis,
/*
* AXI4-Stream output (source)
*/
input wire logic m_clk,
input wire logic m_rst,
taxi_axis_if.src m_axis,
/*
* Pause
*/
input wire logic s_pause_req = 1'b0,
output wire logic s_pause_ack,
input wire logic m_pause_req = 1'b0,
output wire logic m_pause_ack,
/*
* Status
*/
output wire logic [$clog2(DEPTH):0] s_status_depth,
output wire logic [$clog2(DEPTH):0] s_status_depth_commit,
output wire logic s_status_overflow,
output wire logic s_status_bad_frame,
output wire logic s_status_good_frame,
output wire logic [$clog2(DEPTH):0] m_status_depth,
output wire logic [$clog2(DEPTH):0] m_status_depth_commit,
output wire logic m_status_overflow,
output wire logic m_status_bad_frame,
output wire logic m_status_good_frame
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam ID_W = s_axis.ID_W;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam DEST_W = s_axis.DEST_W;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam USER_W = s_axis.USER_W;
localparam CL_DEPTH = $clog2(DEPTH);
localparam CL_KEEP_W = $clog2(KEEP_W);
localparam FIFO_AW = (KEEP_EN && KEEP_W > 1) ? $clog2(DEPTH/KEEP_W) : CL_DEPTH;
localparam OUTPUT_FIFO_AW = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7);
// check configuration
if (FRAME_FIFO && !LAST_EN)
$fatal(0, "Error: FRAME_FIFO set requires LAST_EN set (instance %m)");
if (DROP_OVERSIZE_FRAME && !FRAME_FIFO)
$fatal(0, "Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)");
if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME))
$fatal(0, "Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME))
$fatal(0, "Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
if ((DROP_BAD_FRAME || MARK_WHEN_FULL) && (USER_BAD_FRAME_MASK & {USER_W{1'b1}}) == 0)
$fatal(0, "Error: Invalid USER_BAD_FRAME_MASK value (instance %m)");
if (MARK_WHEN_FULL && FRAME_FIFO)
$fatal(0, "Error: MARK_WHEN_FULL is not compatible with FRAME_FIFO (instance %m)");
if (MARK_WHEN_FULL && !LAST_EN)
$fatal(0, "Error: MARK_WHEN_FULL set requires LAST_EN set (instance %m)");
if (m_axis.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (KEEP_EN && m_axis.KEEP_W != KEEP_W)
$fatal(0, "Error: Interface KEEP_W parameter mismatch (instance %m)");
localparam KEEP_OFFSET = DATA_W;
localparam STRB_OFFSET = KEEP_OFFSET + (KEEP_EN ? KEEP_W : 0);
localparam LAST_OFFSET = STRB_OFFSET + (STRB_EN ? KEEP_W : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_EN ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_EN ? ID_W : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_EN ? DEST_W : 0);
localparam WIDTH = USER_OFFSET + (USER_EN ? USER_W : 0);
function [FIFO_AW:0] bin2gray(input [FIFO_AW:0] b);
bin2gray = b ^ (b >> 1);
endfunction
function [FIFO_AW:0] gray2bin(input [FIFO_AW:0] g);
for (integer i = 0; i <= FIFO_AW; i = i + 1) begin
gray2bin[i] = ^(g >> i);
end
endfunction
logic [FIFO_AW:0] wr_ptr_reg = '0;
logic [FIFO_AW:0] wr_ptr_commit_reg = '0;
logic [FIFO_AW:0] wr_ptr_gray_reg = '0;
logic [FIFO_AW:0] wr_ptr_sync_commit_reg = '0;
logic [FIFO_AW:0] rd_ptr_reg = '0;
logic [FIFO_AW:0] rd_ptr_gray_reg = '0;
logic [FIFO_AW:0] wr_ptr_conv_reg = '0;
logic [FIFO_AW:0] rd_ptr_conv_reg = '0;
logic [FIFO_AW:0] wr_ptr_temp;
logic [FIFO_AW:0] rd_ptr_temp;
(* SHREG_EXTRACT = "NO" *)
logic [FIFO_AW:0] wr_ptr_gray_sync1_reg = '0;
(* SHREG_EXTRACT = "NO" *)
logic [FIFO_AW:0] wr_ptr_gray_sync2_reg = '0;
(* SHREG_EXTRACT = "NO" *)
logic [FIFO_AW:0] wr_ptr_commit_sync_reg = '0;
(* SHREG_EXTRACT = "NO" *)
logic [FIFO_AW:0] rd_ptr_gray_sync1_reg = '0;
(* SHREG_EXTRACT = "NO" *)
logic [FIFO_AW:0] rd_ptr_gray_sync2_reg = '0;
logic wr_ptr_update_valid_reg = 1'b0;
logic wr_ptr_update_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
logic wr_ptr_update_sync1_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
logic wr_ptr_update_sync2_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
logic wr_ptr_update_sync3_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
logic wr_ptr_update_ack_sync1_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
logic wr_ptr_update_ack_sync2_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
logic s_rst_sync1_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
logic s_rst_sync2_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
logic s_rst_sync3_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
logic m_rst_sync1_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
logic m_rst_sync2_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
logic m_rst_sync3_reg = 1'b1;
(* ramstyle = "no_rw_check" *)
logic [WIDTH-1:0] mem[(2**FIFO_AW)-1:0];
logic mem_read_data_valid_reg = 1'b0;
(* shreg_extract = "no" *)
logic [WIDTH-1:0] mem_rd_data_pipe_reg[RAM_PIPELINE+1-1:0];
logic [RAM_PIPELINE+1-1:0] mem_rd_valid_pipe_reg = 0;
// full when first TWO MSBs do NOT match, but rest matches
// (gray code equivalent of first MSB different but rest same)
wire full = wr_ptr_gray_reg == (rd_ptr_gray_sync2_reg ^ {2'b11, {FIFO_AW-1{1'b0}}});
// empty when pointers match exactly
wire empty = FRAME_FIFO ? (rd_ptr_reg == wr_ptr_commit_sync_reg) : (rd_ptr_gray_reg == wr_ptr_gray_sync2_reg);
// overflow within packet
wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {FIFO_AW{1'b0}}});
// control signals
logic write;
logic read;
logic store_output;
logic s_frame_reg = 1'b0;
logic m_frame_reg = 1'b0;
logic drop_frame_reg = 1'b0;
logic mark_frame_reg = 1'b0;
logic send_frame_reg = 1'b0;
logic overflow_reg = 1'b0;
logic bad_frame_reg = 1'b0;
logic good_frame_reg = 1'b0;
logic m_empty_pipe_reg = 1'b0;
logic m_terminate_frame_reg = 1'b0;
logic [FIFO_AW:0] s_depth_reg = '0;
logic [FIFO_AW:0] s_depth_commit_reg = '0;
logic [FIFO_AW:0] m_depth_reg = '0;
logic [FIFO_AW:0] m_depth_commit_reg = '0;
logic overflow_sync1_reg = 1'b0;
logic overflow_sync2_reg = 1'b0;
logic overflow_sync3_reg = 1'b0;
logic overflow_sync4_reg = 1'b0;
logic bad_frame_sync1_reg = 1'b0;
logic bad_frame_sync2_reg = 1'b0;
logic bad_frame_sync3_reg = 1'b0;
logic bad_frame_sync4_reg = 1'b0;
logic good_frame_sync1_reg = 1'b0;
logic good_frame_sync2_reg = 1'b0;
logic good_frame_sync3_reg = 1'b0;
logic good_frame_sync4_reg = 1'b0;
assign s_axis.tready = (FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : (!full || MARK_WHEN_FULL)) && !s_rst_sync3_reg;
wire [WIDTH-1:0] mem_wr_data;
generate
assign mem_wr_data[DATA_W-1:0] = s_axis.tdata;
if (KEEP_EN) assign mem_wr_data[KEEP_OFFSET +: KEEP_W] = s_axis.tkeep;
if (STRB_EN) assign mem_wr_data[STRB_OFFSET +: KEEP_W] = s_axis.tstrb;
if (LAST_EN) assign mem_wr_data[LAST_OFFSET] = s_axis.tlast | mark_frame_reg;
if (ID_EN) assign mem_wr_data[ID_OFFSET +: ID_W] = s_axis.tid;
if (DEST_EN) assign mem_wr_data[DEST_OFFSET +: DEST_W] = s_axis.tdest;
if (USER_EN) assign mem_wr_data[USER_OFFSET +: USER_W] = mark_frame_reg ? USER_BAD_FRAME_VALUE : s_axis.tuser;
endgenerate
wire [WIDTH-1:0] mem_rd_data = mem_rd_data_pipe_reg[RAM_PIPELINE+1-1];
wire m_axis_tready_pipe;
wire m_axis_tvalid_pipe = mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1];
wire [DATA_W-1:0] m_axis_tdata_pipe = mem_rd_data[DATA_W-1:0];
wire [KEEP_W-1:0] m_axis_tkeep_pipe;
wire [KEEP_W-1:0] m_axis_tstrb_pipe;
wire m_axis_tlast_pipe;
wire [ID_W-1:0] m_axis_tid_pipe;
wire [DEST_W-1:0] m_axis_tdest_pipe;
wire [USER_W-1:0] m_axis_tuser_pipe;
if (KEEP_EN) begin
assign m_axis_tkeep_pipe = mem_rd_data[KEEP_OFFSET +: KEEP_W];
end else begin
assign m_axis_tkeep_pipe = '1;
end
if (STRB_EN) begin
assign m_axis_tstrb_pipe = mem_rd_data[STRB_OFFSET +: KEEP_W];
end else begin
assign m_axis_tstrb_pipe = m_axis_tkeep_pipe;
end
if (LAST_EN) begin
assign m_axis_tlast_pipe = mem_rd_data[LAST_OFFSET] | m_terminate_frame_reg;
end else begin
assign m_axis_tlast_pipe = 1'b1;
end
if (ID_EN) begin
assign m_axis_tid_pipe = mem_rd_data[ID_OFFSET +: ID_W];
end else begin
assign m_axis_tid_pipe = '0;
end
if (DEST_EN) begin
assign m_axis_tdest_pipe = mem_rd_data[DEST_OFFSET +: DEST_W];
end else begin
assign m_axis_tdest_pipe = '0;
end
if (USER_EN) begin
assign m_axis_tuser_pipe = m_terminate_frame_reg ? USER_BAD_FRAME_VALUE : mem_rd_data[USER_OFFSET +: USER_W];
end else begin
assign m_axis_tuser_pipe = '0;
end
wire m_axis_tready_out;
wire m_axis_tvalid_out;
wire [DATA_W-1:0] m_axis_tdata_out;
wire [KEEP_W-1:0] m_axis_tkeep_out;
wire [KEEP_W-1:0] m_axis_tstrb_out;
wire m_axis_tlast_out;
wire [ID_W-1:0] m_axis_tid_out;
wire [DEST_W-1:0] m_axis_tdest_out;
wire [USER_W-1:0] m_axis_tuser_out;
wire pipe_ready;
assign s_status_depth = (KEEP_EN && KEEP_W > 1) ? {s_depth_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(s_depth_reg);
assign s_status_depth_commit = (KEEP_EN && KEEP_W > 1) ? {s_depth_commit_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(s_depth_commit_reg);
assign s_status_overflow = overflow_reg;
assign s_status_bad_frame = bad_frame_reg;
assign s_status_good_frame = good_frame_reg;
assign m_status_depth = (KEEP_EN && KEEP_W > 1) ? {m_depth_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(m_depth_reg);
assign m_status_depth_commit = (KEEP_EN && KEEP_W > 1) ? {m_depth_commit_reg, {CL_KEEP_W{1'b0}}} : (CL_DEPTH+1)'(m_depth_commit_reg);
assign m_status_overflow = overflow_sync3_reg ^ overflow_sync4_reg;
assign m_status_bad_frame = bad_frame_sync3_reg ^ bad_frame_sync4_reg;
assign m_status_good_frame = good_frame_sync3_reg ^ good_frame_sync4_reg;
// reset synchronization
always_ff @(posedge m_clk or posedge m_rst) begin
if (m_rst) begin
s_rst_sync1_reg <= 1'b1;
end else begin
s_rst_sync1_reg <= 1'b0;
end
end
always_ff @(posedge s_clk) begin
s_rst_sync2_reg <= s_rst_sync1_reg;
s_rst_sync3_reg <= s_rst_sync2_reg;
end
always_ff @(posedge s_clk or posedge s_rst) begin
if (s_rst) begin
m_rst_sync1_reg <= 1'b1;
end else begin
m_rst_sync1_reg <= 1'b0;
end
end
always_ff @(posedge m_clk) begin
m_rst_sync2_reg <= m_rst_sync1_reg;
m_rst_sync3_reg <= m_rst_sync2_reg;
end
// Write logic
always_ff @(posedge s_clk) begin
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
if (FRAME_FIFO && wr_ptr_update_valid_reg) begin
// have updated pointer to sync
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_commit_reg <= wr_ptr_commit_reg;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end
end
if (s_axis.tready && s_axis.tvalid && LAST_EN) begin
// track input frame status
s_frame_reg <= !s_axis.tlast;
end
if (s_rst_sync3_reg && LAST_EN) begin
// if sink side is reset during transfer, drop partial frame
if (s_frame_reg && !(s_axis.tready && s_axis.tvalid && s_axis.tlast)) begin
drop_frame_reg <= 1'b1;
end
if (s_axis.tready && s_axis.tvalid && !s_axis.tlast) begin
drop_frame_reg <= 1'b1;
end
end
if (FRAME_FIFO) begin
// frame FIFO mode
if (s_axis.tready && s_axis.tvalid) begin
// transfer in
if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin
// full, packet overflow, or currently dropping frame
// drop frame
drop_frame_reg <= 1'b1;
if (s_axis.tlast) begin
// end of frame, reset write pointer
wr_ptr_temp = wr_ptr_commit_reg;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
if (s_axis.tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin
// end of frame or send frame
send_frame_reg <= !s_axis.tlast;
if (s_axis.tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis.tuser ^ USER_BAD_FRAME_VALUE)) begin
// bad packet, reset write pointer
wr_ptr_temp = wr_ptr_commit_reg;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
bad_frame_reg <= 1'b1;
end else begin
// good packet or packet overflow, update write pointer
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_commit_reg <= wr_ptr_temp;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end else begin
// sync in progress; flag it for later
wr_ptr_update_valid_reg <= 1'b1;
end
good_frame_reg <= s_axis.tlast;
end
end
end
end else if (s_axis.tvalid && full_wr && FRAME_FIFO && !DROP_OVERSIZE_FRAME) begin
// data valid with packet overflow
// update write pointer
send_frame_reg <= 1'b1;
wr_ptr_temp = wr_ptr_reg;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_commit_reg <= wr_ptr_temp;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end else begin
// sync in progress; flag it for later
wr_ptr_update_valid_reg <= 1'b1;
end
end
end else begin
// normal FIFO mode
if (s_axis.tready && s_axis.tvalid) begin
if (drop_frame_reg && LAST_EN) begin
// currently dropping frame
if (s_axis.tlast) begin
// end of frame
if (!full && mark_frame_reg && MARK_WHEN_FULL) begin
// terminate marked frame
mark_frame_reg <= 1'b0;
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
end
// end of frame, clear drop flag
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else if ((full || mark_frame_reg) && MARK_WHEN_FULL) begin
// full or marking frame
// drop frame; mark if this isn't the first cycle
drop_frame_reg <= 1'b1;
mark_frame_reg <= mark_frame_reg || s_frame_reg;
if (s_axis.tlast) begin
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
// transfer in
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
end
end else if ((!full && !drop_frame_reg && mark_frame_reg) && MARK_WHEN_FULL) begin
// terminate marked frame
mark_frame_reg <= 1'b0;
mem[wr_ptr_reg[FIFO_AW-1:0]] <= mem_wr_data;
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= bin2gray(wr_ptr_temp);
end
end
if (s_rst_sync3_reg) begin
wr_ptr_reg <= '0;
wr_ptr_commit_reg <= '0;
wr_ptr_gray_reg <= '0;
wr_ptr_sync_commit_reg <= '0;
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_update_reg <= 1'b0;
end
if (s_rst) begin
wr_ptr_reg <= '0;
wr_ptr_commit_reg <= '0;
wr_ptr_gray_reg <= '0;
wr_ptr_sync_commit_reg <= '0;
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_update_reg <= 1'b0;
s_frame_reg <= 1'b0;
drop_frame_reg <= 1'b0;
mark_frame_reg <= 1'b0;
send_frame_reg <= 1'b0;
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
end
end
// Write-side status
always_ff @(posedge s_clk) begin
rd_ptr_conv_reg <= gray2bin(rd_ptr_gray_sync2_reg);
s_depth_reg <= wr_ptr_reg - rd_ptr_conv_reg;
s_depth_commit_reg <= wr_ptr_commit_reg - rd_ptr_conv_reg;
end
// pointer synchronization
always_ff @(posedge s_clk) begin
rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg;
rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg;
wr_ptr_update_ack_sync1_reg <= wr_ptr_update_sync3_reg;
wr_ptr_update_ack_sync2_reg <= wr_ptr_update_ack_sync1_reg;
if (s_rst) begin
rd_ptr_gray_sync1_reg <= '0;
rd_ptr_gray_sync2_reg <= '0;
wr_ptr_update_ack_sync1_reg <= 1'b0;
wr_ptr_update_ack_sync2_reg <= 1'b0;
end
end
always_ff @(posedge m_clk) begin
wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg;
wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg;
if (FRAME_FIFO && wr_ptr_update_sync2_reg ^ wr_ptr_update_sync3_reg) begin
wr_ptr_commit_sync_reg <= wr_ptr_sync_commit_reg;
end
wr_ptr_update_sync1_reg <= wr_ptr_update_reg;
wr_ptr_update_sync2_reg <= wr_ptr_update_sync1_reg;
wr_ptr_update_sync3_reg <= wr_ptr_update_sync2_reg;
if (FRAME_FIFO && m_rst_sync3_reg) begin
wr_ptr_gray_sync1_reg <= '0;
end
if (m_rst) begin
wr_ptr_gray_sync1_reg <= '0;
wr_ptr_gray_sync2_reg <= '0;
wr_ptr_commit_sync_reg <= '0;
wr_ptr_update_sync1_reg <= 1'b0;
wr_ptr_update_sync2_reg <= 1'b0;
wr_ptr_update_sync3_reg <= 1'b0;
end
end
// status synchronization
always_ff @(posedge s_clk) begin
overflow_sync1_reg <= overflow_sync1_reg ^ overflow_reg;
bad_frame_sync1_reg <= bad_frame_sync1_reg ^ bad_frame_reg;
good_frame_sync1_reg <= good_frame_sync1_reg ^ good_frame_reg;
if (s_rst) begin
overflow_sync1_reg <= 1'b0;
bad_frame_sync1_reg <= 1'b0;
good_frame_sync1_reg <= 1'b0;
end
end
always_ff @(posedge m_clk) begin
overflow_sync2_reg <= overflow_sync1_reg;
overflow_sync3_reg <= overflow_sync2_reg;
overflow_sync4_reg <= overflow_sync3_reg;
bad_frame_sync2_reg <= bad_frame_sync1_reg;
bad_frame_sync3_reg <= bad_frame_sync2_reg;
bad_frame_sync4_reg <= bad_frame_sync3_reg;
good_frame_sync2_reg <= good_frame_sync1_reg;
good_frame_sync3_reg <= good_frame_sync2_reg;
good_frame_sync4_reg <= good_frame_sync3_reg;
if (m_rst) begin
overflow_sync2_reg <= 1'b0;
overflow_sync3_reg <= 1'b0;
overflow_sync4_reg <= 1'b0;
bad_frame_sync2_reg <= 1'b0;
bad_frame_sync3_reg <= 1'b0;
bad_frame_sync4_reg <= 1'b0;
good_frame_sync2_reg <= 1'b0;
good_frame_sync3_reg <= 1'b0;
good_frame_sync4_reg <= 1'b0;
end
end
// Read logic
always_ff @(posedge m_clk) begin
if (m_axis_tready_pipe) begin
// output ready; invalidate stage
mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0;
m_terminate_frame_reg <= 1'b0;
end
for (integer j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin
// if (m_axis_tready_pipe || ((~mem_rd_valid_pipe_reg) >> j)) begin
if (m_axis_tready_pipe || ((RAM_PIPELINE+1)'(~mem_rd_valid_pipe_reg) >> j) != 0) begin
// output ready or bubble in pipeline; transfer down pipeline
mem_rd_valid_pipe_reg[j] <= mem_rd_valid_pipe_reg[j-1];
mem_rd_data_pipe_reg[j] <= mem_rd_data_pipe_reg[j-1];
mem_rd_valid_pipe_reg[j-1] <= 1'b0;
end
end
if (m_axis_tready_pipe || &mem_rd_valid_pipe_reg == 0) begin
// output ready or bubble in pipeline; read new data from FIFO
mem_rd_valid_pipe_reg[0] <= 1'b0;
mem_rd_data_pipe_reg[0] <= mem[rd_ptr_reg[FIFO_AW-1:0]];
if (!empty && !m_rst_sync3_reg && !m_empty_pipe_reg && pipe_ready) begin
// not empty, increment pointer
mem_rd_valid_pipe_reg[0] <= 1'b1;
rd_ptr_temp = rd_ptr_reg + 1;
rd_ptr_reg <= rd_ptr_temp;
rd_ptr_gray_reg <= rd_ptr_temp ^ (rd_ptr_temp >> 1);
end
end
if (m_axis_tvalid_pipe && LAST_EN) begin
// track output frame status
if (m_axis_tlast_pipe && m_axis_tready_pipe) begin
m_frame_reg <= 1'b0;
end else begin
m_frame_reg <= 1'b1;
end
end
if (m_empty_pipe_reg && mem_rd_valid_pipe_reg == 0 && LAST_EN) begin
// terminate frame
// (only for frame transfers interrupted by source reset)
if (m_frame_reg) begin
mem_rd_valid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b1;
m_terminate_frame_reg <= 1'b1;
end
m_empty_pipe_reg <= 1'b0;
end
if (m_rst_sync3_reg && LAST_EN) begin
// if source side is reset during transfer, drop partial frame
m_empty_pipe_reg <= 1'b1;
end
if (m_rst_sync3_reg) begin
rd_ptr_reg <= '0;
rd_ptr_gray_reg <= '0;
end
if (m_rst) begin
rd_ptr_reg <= '0;
rd_ptr_gray_reg <= '0;
mem_rd_valid_pipe_reg <= '0;
m_frame_reg <= 1'b0;
m_empty_pipe_reg <= 1'b0;
m_terminate_frame_reg <= 1'b0;
end
end
// Read-side status
always_ff @(posedge m_clk) begin
wr_ptr_conv_reg <= gray2bin(wr_ptr_gray_sync2_reg);
m_depth_reg <= wr_ptr_conv_reg - rd_ptr_reg;
m_depth_commit_reg <= FRAME_FIFO ? wr_ptr_commit_sync_reg - rd_ptr_reg : wr_ptr_conv_reg - rd_ptr_reg;
end
if (!OUTPUT_FIFO_EN) begin
assign pipe_ready = 1'b1;
assign m_axis_tready_pipe = m_axis_tready_out;
assign m_axis_tvalid_out = m_axis_tvalid_pipe;
assign m_axis_tdata_out = m_axis_tdata_pipe;
assign m_axis_tkeep_out = m_axis_tkeep_pipe;
assign m_axis_tstrb_out = m_axis_tstrb_pipe;
assign m_axis_tlast_out = m_axis_tlast_pipe;
assign m_axis_tid_out = m_axis_tid_pipe;
assign m_axis_tdest_out = m_axis_tdest_pipe;
assign m_axis_tuser_out = m_axis_tuser_pipe;
end else begin : output_fifo
// output datapath logic
logic [DATA_W-1:0] m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] m_axis_tstrb_reg = '0;
logic m_axis_tvalid_reg = 1'b0;
logic m_axis_tlast_reg = 1'b0;
logic [ID_W-1:0] m_axis_tid_reg = '0;
logic [DEST_W-1:0] m_axis_tdest_reg = '0;
logic [USER_W-1:0] m_axis_tuser_reg = '0;
logic [OUTPUT_FIFO_AW+1-1:0] out_fifo_wr_ptr_reg = 0;
logic [OUTPUT_FIFO_AW+1-1:0] out_fifo_rd_ptr_reg = 0;
logic out_fifo_half_full_reg = 1'b0;
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_AW{1'b0}}});
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [DATA_W-1:0] out_fifo_tdata[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [KEEP_W-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [KEEP_W-1:0] out_fifo_tstrb[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic out_fifo_tlast[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [ID_W-1:0] out_fifo_tid[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [DEST_W-1:0] out_fifo_tdest[2**OUTPUT_FIFO_AW-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [USER_W-1:0] out_fifo_tuser[2**OUTPUT_FIFO_AW-1:0];
assign pipe_ready = !out_fifo_half_full_reg;
assign m_axis_tready_pipe = 1'b1;
assign m_axis_tdata_out = m_axis_tdata_reg;
assign m_axis_tkeep_out = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis_tstrb_out = STRB_EN ? m_axis_tkeep_reg : m_axis_tkeep_out;
assign m_axis_tvalid_out = m_axis_tvalid_reg;
assign m_axis_tlast_out = LAST_EN ? m_axis_tlast_reg : 1'b1;
assign m_axis_tid_out = ID_EN ? m_axis_tid_reg : '0;
assign m_axis_tdest_out = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis_tuser_out = USER_EN ? m_axis_tuser_reg : '0;
always_ff @(posedge m_clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready_out;
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_AW-1);
if (!out_fifo_full && m_axis_tvalid_pipe) begin
out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tdata_pipe;
out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tkeep_pipe;
out_fifo_tstrb[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tstrb_pipe;
out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tlast_pipe;
out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tid_pipe;
out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tdest_pipe;
out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_AW-1:0]] <= m_axis_tuser_pipe;
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
end
if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready_out)) begin
m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tstrb_reg <= out_fifo_tstrb[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tvalid_reg <= 1'b1;
m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_AW-1:0]];
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
end
if (m_rst) begin
out_fifo_wr_ptr_reg <= 0;
out_fifo_rd_ptr_reg <= 0;
m_axis_tvalid_reg <= 1'b0;
end
end
end
if (PAUSE_EN) begin : pause
// Pause logic
logic pause_reg = 1'b0;
logic pause_frame_reg = 1'b0;
logic s_pause_req_sync1_reg;
logic s_pause_req_sync2_reg;
logic s_pause_req_sync3_reg;
logic s_pause_ack_sync1_reg;
logic s_pause_ack_sync2_reg;
logic s_pause_ack_sync3_reg;
always_ff @(posedge s_clk) begin
s_pause_req_sync1_reg <= s_pause_req;
s_pause_ack_sync2_reg <= s_pause_ack_sync1_reg;
s_pause_ack_sync3_reg <= s_pause_ack_sync2_reg;
end
always_ff @(posedge m_clk) begin
s_pause_req_sync2_reg <= s_pause_req_sync1_reg;
s_pause_req_sync3_reg <= s_pause_req_sync2_reg;
s_pause_ack_sync1_reg <= pause_reg;
end
assign m_axis_tready_out = m_axis.tready && !pause_reg;
assign m_axis.tvalid = m_axis_tvalid_out && !pause_reg;
assign m_axis.tdata = m_axis_tdata_out;
assign m_axis.tkeep = m_axis_tkeep_out;
assign m_axis.tstrb = m_axis_tstrb_out;
assign m_axis.tlast = m_axis_tlast_out;
assign m_axis.tid = m_axis_tid_out;
assign m_axis.tdest = m_axis_tdest_out;
assign m_axis.tuser = m_axis_tuser_out;
assign s_pause_ack = s_pause_ack_sync3_reg;
assign m_pause_ack = pause_reg;
always_ff @(posedge m_clk) begin
if (FRAME_PAUSE) begin
if (pause_reg) begin
// paused; update pause status
pause_reg <= m_pause_req || s_pause_req_sync3_reg;
end else if (m_axis_tvalid_out) begin
// frame transfer; set frame bit
pause_frame_reg <= 1'b1;
if (m_axis.tready && m_axis.tlast) begin
// end of frame; clear frame bit and update pause status
pause_frame_reg <= 1'b0;
pause_reg <= m_pause_req || s_pause_req_sync3_reg;
end
end else if (!pause_frame_reg) begin
// idle; update pause status
pause_reg <= m_pause_req || s_pause_req_sync3_reg;
end
end else begin
pause_reg <= m_pause_req || s_pause_req_sync3_reg;
end
if (m_rst) begin
pause_frame_reg <= 1'b0;
pause_reg <= 1'b0;
end
end
end else begin
assign m_axis_tready_out = m_axis.tready;
assign m_axis.tvalid = m_axis_tvalid_out;
assign m_axis.tdata = m_axis_tdata_out;
assign m_axis.tkeep = m_axis_tkeep_out;
assign m_axis.tstrb = m_axis_tstrb_out;
assign m_axis.tlast = m_axis_tlast_out;
assign m_axis.tid = m_axis_tid_out;
assign m_axis.tdest = m_axis_tdest_out;
assign m_axis.tuser = m_axis_tuser_out;
assign s_pause_ack = 1'b0;
assign m_pause_ack = 1'b0;
end
endmodule
`resetall

View File

@@ -0,0 +1,128 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2019-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
#
# AXI stream asynchronous FIFO timing constraints
foreach fifo_inst [get_cells -hier -filter {(ORIG_REF_NAME == taxi_axis_async_fifo || REF_NAME == taxi_axis_async_fifo)}] {
puts "Inserting timing constraints for taxi_axis_async_fifo instance $fifo_inst"
# get clock periods
set write_clk [get_clocks -of_objects [get_cells -quiet "$fifo_inst/wr_ptr_reg_reg[*] $fifo_inst/wr_ptr_gray_reg_reg[*] $fifo_inst/rd_ptr_gray_sync1_reg_reg[*]"]]
set read_clk [get_clocks -of_objects [get_cells -quiet "$fifo_inst/rd_ptr_reg_reg[*] $fifo_inst/rd_ptr_gray_reg_reg[*] $fifo_inst/wr_ptr_gray_sync1_reg_reg[*]"]]
set write_clk_period [if {[llength $write_clk]} {get_property -min PERIOD $write_clk} {expr 1.0}]
set read_clk_period [if {[llength $read_clk]} {get_property -min PERIOD $read_clk} {expr 1.0}]
set min_clk_period [expr min($write_clk_period, $read_clk_period)]
# reset synchronization
set reset_ffs [get_cells -quiet -hier -regexp ".*/s_rst_sync\[23\]_reg_reg" -filter "PARENT == $fifo_inst"]
if {[llength $reset_ffs]} {
set_property ASYNC_REG TRUE $reset_ffs
# hunt down source
set dest [get_cells $fifo_inst/s_rst_sync2_reg_reg]
set dest_pins [get_pins -of_objects $dest -filter {REF_PIN_NAME == D}]
set net [get_nets -segments -of_objects $dest_pins]
set source_pins [get_pins -of_objects $net -filter {IS_LEAF && DIRECTION == OUT}]
set source [get_cells -of_objects $source_pins]
set_max_delay -from $source -to $dest -datapath_only $read_clk_period
}
set reset_ffs [get_cells -quiet -hier -regexp ".*/m_rst_sync\[23\]_reg_reg" -filter "PARENT == $fifo_inst"]
if {[llength $reset_ffs]} {
set_property ASYNC_REG TRUE $reset_ffs
# hunt down source
set dest [get_cells $fifo_inst/m_rst_sync2_reg_reg]
set dest_pins [get_pins -of_objects $dest -filter {REF_PIN_NAME == D}]
set net [get_nets -segments -of_objects $dest_pins]
set source_pins [get_pins -of_objects $net -filter {IS_LEAF && DIRECTION == OUT}]
set source [get_cells -of_objects $source_pins]
set_max_delay -from $source -to $dest -datapath_only $write_clk_period
}
# pointer synchronization
set sync_ffs [get_cells -quiet -hier -regexp ".*/rd_ptr_gray_sync\[12\]_reg_reg\\\[\\d+\\\]" -filter "PARENT == $fifo_inst"]
if {[llength $sync_ffs]} {
set_property ASYNC_REG TRUE $sync_ffs
set_max_delay -from [get_cells "$fifo_inst/rd_ptr_reg_reg[*] $fifo_inst/rd_ptr_gray_reg_reg[*]"] -to [get_cells "$fifo_inst/rd_ptr_gray_sync1_reg_reg[*]"] -datapath_only $read_clk_period
set_bus_skew -from [get_cells "$fifo_inst/rd_ptr_reg_reg[*] $fifo_inst/rd_ptr_gray_reg_reg[*]"] -to [get_cells "$fifo_inst/rd_ptr_gray_sync1_reg_reg[*]"] $write_clk_period
}
set sync_ffs [get_cells -quiet -hier -regexp ".*/wr_ptr_gray_sync\[12\]_reg_reg\\\[\\d+\\\]" -filter "PARENT == $fifo_inst"]
if {[llength $sync_ffs]} {
set_property ASYNC_REG TRUE $sync_ffs
set_max_delay -from [get_cells -quiet "$fifo_inst/wr_ptr_reg_reg[*] $fifo_inst/wr_ptr_gray_reg_reg[*]"] -to [get_cells "$fifo_inst/wr_ptr_gray_sync1_reg_reg[*]"] -datapath_only $write_clk_period
set_bus_skew -from [get_cells -quiet "$fifo_inst/wr_ptr_reg_reg[*] $fifo_inst/wr_ptr_gray_reg_reg[*]"] -to [get_cells "$fifo_inst/wr_ptr_gray_sync1_reg_reg[*]"] $read_clk_period
}
set sync_ffs [get_cells -quiet -hier -regexp ".*/wr_ptr_commit_sync_reg_reg\\\[\\d+\\\]" -filter "PARENT == $fifo_inst"]
if {[llength $sync_ffs]} {
set_property ASYNC_REG TRUE $sync_ffs
set_max_delay -from [get_cells -quiet "$fifo_inst/wr_ptr_sync_commit_reg_reg[*]"] -to [get_cells "$fifo_inst/wr_ptr_commit_sync_reg_reg[*]"] -datapath_only $write_clk_period
set_bus_skew -from [get_cells -quiet "$fifo_inst/wr_ptr_sync_commit_reg_reg[*]"] -to [get_cells "$fifo_inst/wr_ptr_commit_sync_reg_reg[*]"] $read_clk_period
}
# output register (needed for distributed RAM sync write/async read)
set output_reg_ffs [get_cells -quiet "$fifo_inst/m_axis_pipe_reg_reg[0][*]"]
if {[llength $output_reg_ffs]} {
if {[llength $write_clk]} {
set_false_path -from $write_clk -to $output_reg_ffs
}
}
# frame FIFO pointer update synchronization
set update_ffs [get_cells -quiet -hier -regexp ".*/wr_ptr_update(_ack)?_sync\[123\]_reg_reg" -filter "PARENT == $fifo_inst"]
if {[llength $update_ffs]} {
set_property ASYNC_REG TRUE $update_ffs
set_max_delay -from [get_cells "$fifo_inst/wr_ptr_update_reg_reg"] -to [get_cells "$fifo_inst/wr_ptr_update_sync1_reg_reg"] -datapath_only $write_clk_period
set_max_delay -from [get_cells "$fifo_inst/wr_ptr_update_sync3_reg_reg"] -to [get_cells "$fifo_inst/wr_ptr_update_ack_sync1_reg_reg"] -datapath_only $read_clk_period
}
# status synchronization
foreach i {overflow bad_frame good_frame} {
set status_sync_regs [get_cells -quiet -hier -regexp ".*/${i}_sync\[123\]_reg_reg" -filter "PARENT == $fifo_inst"]
if {[llength $status_sync_regs]} {
set_property ASYNC_REG TRUE $status_sync_regs
set_max_delay -from [get_cells "$fifo_inst/${i}_sync1_reg_reg"] -to [get_cells "$fifo_inst/${i}_sync2_reg_reg"] -datapath_only $read_clk_period
}
}
# pause sync
set sync_ffs [get_cells -quiet -hier -regexp ".*/pause.s_pause_req_sync\[123\]_reg_reg" -filter "PARENT == $fifo_inst"]
if {[llength $sync_ffs]} {
set_property ASYNC_REG TRUE $sync_ffs
set_max_delay -from [get_cells "$fifo_inst/pause.s_pause_req_sync1_reg_reg"] -to [get_cells "$fifo_inst/pause.s_pause_req_sync2_reg_reg"] -datapath_only $read_clk_period
}
set sync_ffs [get_cells -quiet -hier -regexp ".*/pause.s_pause_ack_sync\[123\]_reg_reg" -filter "PARENT == $fifo_inst"]
if {[llength $sync_ffs]} {
set_property ASYNC_REG TRUE $sync_ffs
set_max_delay -from [get_cells "$fifo_inst/pause.s_pause_ack_sync1_reg_reg"] -to [get_cells "$fifo_inst/pause.s_pause_ack_sync2_reg_reg"] -datapath_only $write_clk_period
}
}

View File

@@ -0,0 +1,69 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2021-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
DUT = taxi_axis_async_fifo
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += ../../../rtl/axis/$(DUT).sv
VERILOG_SOURCES += ../../../rtl/axis/taxi_axis_if.sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_DATA_W := 8
export PARAM_KEEP_EN := $(shell echo $$(( $(PARAM_DATA_W) > 8 )))
export PARAM_KEEP_W := $(shell echo $$(( ( $(PARAM_DATA_W) + 7 ) / 8 )))
export PARAM_STRB_EN := 0
export PARAM_DEPTH := $(shell echo $$(( 1024 * $(PARAM_KEEP_W) )))
export PARAM_LAST_EN := 1
export PARAM_ID_EN := 1
export PARAM_ID_W := 8
export PARAM_DEST_EN := 1
export PARAM_DEST_W := 8
export PARAM_USER_EN := 1
export PARAM_USER_W := 1
export PARAM_RAM_PIPELINE := 1
export PARAM_OUTPUT_FIFO_EN := 0
export PARAM_FRAME_FIFO := 1
export PARAM_USER_BAD_FRAME_VALUE := 1
export PARAM_USER_BAD_FRAME_MASK := 1
export PARAM_DROP_OVERSIZE_FRAME := $(PARAM_FRAME_FIFO)
export PARAM_DROP_BAD_FRAME := $(PARAM_DROP_OVERSIZE_FRAME)
export PARAM_DROP_WHEN_FULL := 0
export PARAM_MARK_WHEN_FULL := 0
export PARAM_PAUSE_EN := 1
export PARAM_FRAME_PAUSE := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,734 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamFrame, AxiStreamSource, AxiStreamSink
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
s_clk = int(os.getenv("S_CLK_PERIOD", "10"))
m_clk = int(os.getenv("M_CLK_PERIOD", "11"))
cocotb.start_soon(Clock(dut.s_clk, s_clk, units="ns").start())
cocotb.start_soon(Clock(dut.m_clk, m_clk, units="ns").start())
self.source = AxiStreamSource(AxiStreamBus.from_entity(dut.s_axis), dut.s_clk, dut.s_rst)
self.sink = AxiStreamSink(AxiStreamBus.from_entity(dut.m_axis), dut.m_clk, dut.m_rst)
dut.s_pause_req.setimmediatevalue(0)
dut.m_pause_req.setimmediatevalue(0)
def set_idle_generator(self, generator=None):
if generator:
self.source.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.sink.set_pause_generator(generator())
async def reset(self):
self.dut.m_rst.setimmediatevalue(0)
self.dut.s_rst.setimmediatevalue(0)
for k in range(10):
await RisingEdge(self.dut.s_clk)
self.dut.m_rst.value = 1
self.dut.s_rst.value = 1
for k in range(10):
await RisingEdge(self.dut.s_clk)
self.dut.m_rst.value = 0
self.dut.s_rst.value = 0
for k in range(10):
await RisingEdge(self.dut.s_clk)
async def reset_source(self):
self.dut.s_rst.setimmediatevalue(0)
for k in range(10):
await RisingEdge(self.dut.s_clk)
self.dut.s_rst.value = 1
for k in range(10):
await RisingEdge(self.dut.s_clk)
self.dut.s_rst.value = 0
for k in range(10):
await RisingEdge(self.dut.s_clk)
async def reset_sink(self):
self.dut.m_rst.setimmediatevalue(0)
for k in range(10):
await RisingEdge(self.dut.m_clk)
self.dut.m_rst.value = 1
for k in range(10):
await RisingEdge(self.dut.m_clk)
self.dut.m_rst.value = 0
for k in range(10):
await RisingEdge(self.dut.m_clk)
async def run_test(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
id_count = 2**len(tb.source.bus.tid)
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for test_data in [payload_data(x) for x in payload_lengths()]:
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id
test_frame.tdest = cur_id
test_frames.append(test_frame)
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % id_count
for test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tid == test_frame.tid
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_tuser_assert(dut):
tb = TB(dut)
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32))
test_frame = AxiStreamFrame(test_data, tuser=1)
await tb.source.send(test_frame)
if int(dut.DROP_BAD_FRAME.value):
for k in range(64):
await RisingEdge(dut.s_clk)
else:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_data
assert rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_init_sink_pause(dut):
tb = TB(dut)
await tb.reset()
tb.sink.pause = True
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range(64):
await RisingEdge(dut.s_clk)
tb.sink.pause = False
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_data
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_init_sink_pause_reset(dut):
tb = TB(dut)
await tb.reset()
tb.sink.pause = True
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range(64):
await RisingEdge(dut.s_clk)
await tb.reset()
tb.sink.pause = False
for k in range(64):
await RisingEdge(dut.s_clk)
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_init_sink_pause_source_reset(dut):
tb = TB(dut)
await tb.reset()
tb.sink.pause = True
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 512))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range(1024):
await RisingEdge(dut.s_clk)
await tb.reset_source()
tb.sink.pause = False
for k in range(64):
await RisingEdge(dut.s_clk)
rx_frame = await tb.sink.recv()
assert rx_frame.tuser
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_init_sink_pause_sink_reset(dut):
tb = TB(dut)
await tb.reset()
tb.sink.pause = True
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range(64):
await RisingEdge(dut.s_clk)
await tb.reset_sink()
tb.sink.pause = False
for k in range(64):
await RisingEdge(dut.s_clk)
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_shift_in_source_reset(dut):
tb = TB(dut)
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 256))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range(8):
await RisingEdge(dut.s_clk)
await tb.reset_source()
for k in range(64):
await RisingEdge(dut.s_clk)
if int(dut.FRAME_FIFO.value):
assert tb.sink.empty()
else:
rx_frame = await tb.sink.recv()
assert rx_frame.tuser
assert tb.sink.empty()
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_shift_in_sink_reset(dut):
tb = TB(dut)
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 256))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range(8):
await RisingEdge(dut.s_clk)
await tb.reset_sink()
for k in range(64):
await RisingEdge(dut.s_clk)
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_shift_out_source_reset(dut):
tb = TB(dut)
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 256))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
await RisingEdge(dut.m_axis.tvalid)
for k in range(8):
await RisingEdge(dut.s_clk)
await tb.reset_source()
for k in range(64):
await RisingEdge(dut.s_clk)
rx_frame = await tb.sink.recv()
assert rx_frame.tuser
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_shift_out_sink_reset(dut):
tb = TB(dut)
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 256))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
await RisingEdge(dut.m_axis.tvalid)
for k in range(8):
await RisingEdge(dut.s_clk)
await tb.reset_sink()
for k in range(64):
await RisingEdge(dut.s_clk)
assert tb.sink.idle()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_pause(dut):
tb = TB(dut)
byte_lanes = tb.source.byte_lanes
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 16*byte_lanes))
test_frame = AxiStreamFrame(test_data)
for k in range(16):
await tb.source.send(test_frame)
for k in range(60):
await RisingEdge(dut.s_clk)
dut.m_pause_req.value = 1
for k in range(64):
await RisingEdge(dut.s_clk)
assert tb.sink.idle()
dut.m_pause_req.value = 0
for k in range(60):
await RisingEdge(dut.s_clk)
dut.s_pause_req.value = 1
for k in range(64):
await RisingEdge(dut.s_clk)
assert tb.sink.idle()
dut.s_pause_req.value = 0
for k in range(16):
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_data
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_overflow(dut):
tb = TB(dut)
depth = int(dut.DEPTH.value)
byte_lanes = tb.source.byte_lanes
await tb.reset()
tb.sink.pause = True
size = (16*byte_lanes)
count = depth*2 // size
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), size))
test_frame = AxiStreamFrame(test_data)
for k in range(count):
await tb.source.send(test_frame)
for k in range((depth//byte_lanes)*3):
await RisingEdge(dut.s_clk)
if int(dut.DROP_WHEN_FULL.value) or int(dut.MARK_WHEN_FULL.value):
assert tb.source.idle()
else:
assert not tb.source.idle()
tb.sink.pause = False
if int(dut.DROP_WHEN_FULL.value) or int(dut.MARK_WHEN_FULL.value):
for k in range((depth//byte_lanes)*3):
await RisingEdge(dut.s_clk)
rx_count = 0
while not tb.sink.empty():
rx_frame = await tb.sink.recv()
if int(dut.MARK_WHEN_FULL.value) and rx_frame.tuser:
continue
assert rx_frame.tdata == test_data
assert not rx_frame.tuser
rx_count += 1
assert rx_count < count
else:
for k in range(count):
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_data
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_test_oversize(dut):
tb = TB(dut)
depth = int(dut.DEPTH.value)
byte_lanes = tb.source.byte_lanes
await tb.reset()
tb.sink.pause = True
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), depth*2))
test_frame = AxiStreamFrame(test_data)
await tb.source.send(test_frame)
for k in range((depth//byte_lanes)*2):
await RisingEdge(dut.s_clk)
tb.sink.pause = False
if int(dut.DROP_OVERSIZE_FRAME.value):
for k in range((depth//byte_lanes)*2):
await RisingEdge(dut.s_clk)
else:
rx_frame = await tb.sink.recv()
if int(dut.MARK_WHEN_FULL.value):
assert rx_frame.tuser
else:
assert rx_frame.tdata == test_data
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.source.byte_lanes
id_count = 2**len(tb.source.bus.tid)
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for k in range(512):
length = random.randint(1, byte_lanes*16)
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), length))
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id
test_frame.tdest = cur_id
test_frames.append(test_frame)
await tb.source.send(test_frame)
cur_id = (cur_id + 1) % id_count
if int(dut.DROP_WHEN_FULL.value) or int(dut.MARK_WHEN_FULL.value):
cycles = 0
while cycles < 100:
cycles += 1
if not tb.source.idle() or int(dut.s_axis.tvalid.value) or int(dut.m_axis.tvalid.value) or int(dut.m_status_depth.value):
cycles = 0
await RisingEdge(dut.m_clk)
while not tb.sink.empty():
rx_frame = await tb.sink.recv()
if int(dut.MARK_WHEN_FULL.value) and rx_frame.tuser:
continue
assert not rx_frame.tuser
while True:
test_frame = test_frames.pop(0)
if rx_frame.tid == test_frame.tid and rx_frame.tdest == test_frame.tdest and rx_frame.tdata == test_frame.tdata:
break
assert len(test_frames) < 512
else:
for test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert rx_frame.tid == test_frame.tid
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.s_clk)
await RisingEdge(dut.s_clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
def size_list():
data_width = len(cocotb.top.m_axis.tdata)
byte_width = data_width // 8
return list(range(1, byte_width*4+1))+[512]+[1]*64
def incrementing_payload(length):
return bytearray(itertools.islice(itertools.cycle(range(256)), length))
if cocotb.SIM_NAME:
factory = TestFactory(run_test)
factory.add_option("payload_lengths", [size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
for test in [
run_test_tuser_assert,
run_test_init_sink_pause,
run_test_init_sink_pause_reset,
run_test_init_sink_pause_source_reset,
run_test_init_sink_pause_sink_reset,
run_test_shift_in_source_reset,
run_test_shift_in_sink_reset,
run_test_shift_out_source_reset,
run_test_shift_out_sink_reset,
run_test_pause,
run_test_overflow,
run_test_oversize
]:
factory = TestFactory(test)
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.dirname(__file__)
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize(("s_clk", "m_clk"), [(10, 10), (10, 11), (11, 10)])
@pytest.mark.parametrize(("frame_fifo", "drop_oversize_frame", "drop_bad_frame",
"drop_when_full", "mark_when_full"),
[(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0),
(1, 1, 1, 1, 0), (0, 0, 0, 0, 1)])
@pytest.mark.parametrize(("ram_pipeline", "output_fifo"),
[(0, 0), (1, 0), (4, 0), (0, 1), (1, 1), (4, 1)])
@pytest.mark.parametrize("data_w", [8, 16, 32, 64])
def test_taxi_axis_async_fifo(request, data_w, ram_pipeline, output_fifo,
frame_fifo, drop_oversize_frame, drop_bad_frame,
drop_when_full, mark_when_full, s_clk, m_clk):
dut = "taxi_axis_async_fifo"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, "axis", f"{dut}.sv"),
os.path.join(rtl_dir, "axis", "taxi_axis_if.sv"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['DATA_W'] = data_w
parameters['KEEP_EN'] = int(parameters['DATA_W'] > 8)
parameters['KEEP_W'] = (parameters['DATA_W'] + 7) // 8
parameters['STRB_EN'] = 0
parameters['DEPTH'] = 1024 * parameters['KEEP_W']
parameters['LAST_EN'] = 1
parameters['ID_EN'] = 1
parameters['ID_W'] = 8
parameters['DEST_EN'] = 1
parameters['DEST_W'] = 8
parameters['USER_EN'] = 1
parameters['USER_W'] = 1
parameters['RAM_PIPELINE'] = ram_pipeline
parameters['OUTPUT_FIFO_EN'] = output_fifo
parameters['FRAME_FIFO'] = frame_fifo
parameters['USER_BAD_FRAME_VALUE'] = 1
parameters['USER_BAD_FRAME_MASK'] = 1
parameters['DROP_OVERSIZE_FRAME'] = drop_oversize_frame
parameters['DROP_BAD_FRAME'] = drop_bad_frame
parameters['DROP_WHEN_FULL'] = drop_when_full
parameters['MARK_WHEN_FULL'] = mark_when_full
parameters['PAUSE_EN'] = 1
parameters['FRAME_PAUSE'] = 1
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
extra_env['S_CLK_PERIOD'] = str(s_clk)
extra_env['M_CLK_PERIOD'] = str(m_clk)
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,138 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream asynchronous FIFO testbench
*/
module test_taxi_axis_async_fifo #
(
/* verilator lint_off WIDTHTRUNC */
parameter DEPTH = 4096,
parameter DATA_W = 8,
parameter logic KEEP_EN = (DATA_W>8),
parameter KEEP_W = ((DATA_W+7)/8),
parameter logic STRB_EN = 1'b0,
parameter logic LAST_EN = 1'b1,
parameter logic ID_EN = 1'b0,
parameter ID_W = 8,
parameter logic DEST_EN = 1'b0,
parameter DEST_W = 8,
parameter logic USER_EN = 1'b1,
parameter USER_W = 1,
parameter RAM_PIPELINE = 1,
parameter logic OUTPUT_FIFO_EN = 1'b0,
parameter logic FRAME_FIFO = 1'b0,
parameter logic [USER_W-1:0] USER_BAD_FRAME_VALUE = 1'b1,
parameter logic [USER_W-1:0] USER_BAD_FRAME_MASK = 1'b1,
parameter logic DROP_OVERSIZE_FRAME = FRAME_FIFO,
parameter logic DROP_BAD_FRAME = 1'b0,
parameter logic DROP_WHEN_FULL = 1'b0,
parameter logic MARK_WHEN_FULL = 1'b0,
parameter logic PAUSE_EN = 1'b0,
parameter logic FRAME_PAUSE = FRAME_FIFO
/* verilator lint_on WIDTHTRUNC */
)
();
logic s_clk;
logic s_rst;
logic m_clk;
logic m_rst;
taxi_axis_if #(
.DATA_W(DATA_W),
.KEEP_EN(KEEP_EN),
.KEEP_W(KEEP_W),
.STRB_EN(STRB_EN),
.LAST_EN(LAST_EN),
.ID_EN(ID_EN),
.ID_W(ID_W),
.DEST_EN(DEST_EN),
.DEST_W(DEST_W),
.USER_EN(USER_EN),
.USER_W(USER_W)
) s_axis(), m_axis();
logic s_pause_req;
logic s_pause_ack;
logic m_pause_req;
logic m_pause_ack;
logic [$clog2(DEPTH):0] s_status_depth;
logic [$clog2(DEPTH):0] s_status_depth_commit;
logic s_status_overflow;
logic s_status_bad_frame;
logic s_status_good_frame;
logic [$clog2(DEPTH):0] m_status_depth;
logic [$clog2(DEPTH):0] m_status_depth_commit;
logic m_status_overflow;
logic m_status_bad_frame;
logic m_status_good_frame;
taxi_axis_async_fifo #(
.DEPTH(DEPTH),
.RAM_PIPELINE(RAM_PIPELINE),
.OUTPUT_FIFO_EN(OUTPUT_FIFO_EN),
.FRAME_FIFO(FRAME_FIFO),
.USER_BAD_FRAME_VALUE(USER_BAD_FRAME_VALUE),
.USER_BAD_FRAME_MASK(USER_BAD_FRAME_MASK),
.DROP_OVERSIZE_FRAME(DROP_OVERSIZE_FRAME),
.DROP_BAD_FRAME(DROP_BAD_FRAME),
.DROP_WHEN_FULL(DROP_WHEN_FULL),
.MARK_WHEN_FULL(MARK_WHEN_FULL),
.PAUSE_EN(PAUSE_EN),
.FRAME_PAUSE(FRAME_PAUSE)
)
uut (
/*
* AXI4-Stream input (sink)
*/
.s_clk(s_clk),
.s_rst(s_rst),
.s_axis(s_axis),
/*
* AXI4-Stream output (source)
*/
.m_clk(m_clk),
.m_rst(m_rst),
.m_axis(m_axis),
/*
* Pause
*/
.s_pause_req(s_pause_req),
.s_pause_ack(s_pause_ack),
.m_pause_req(m_pause_req),
.m_pause_ack(m_pause_ack),
/*
* Status
*/
.s_status_depth(s_status_depth),
.s_status_depth_commit(s_status_depth_commit),
.s_status_overflow(s_status_overflow),
.s_status_bad_frame(s_status_bad_frame),
.s_status_good_frame(s_status_good_frame),
.m_status_depth(m_status_depth),
.m_status_depth_commit(m_status_depth_commit),
.m_status_overflow(m_status_overflow),
.m_status_bad_frame(m_status_bad_frame),
.m_status_good_frame(m_status_good_frame)
);
endmodule
`resetall