ptp: Add PTP clock CDC module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-13 12:49:42 -08:00
parent 17b4c37a1e
commit f356fad6fe
3 changed files with 1354 additions and 0 deletions

View File

@@ -0,0 +1,813 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2019-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1fs
`default_nettype none
/*
* PTP clock CDC (clock domain crossing) module
*/
module taxi_ptp_clock_cdc #
(
parameter TS_W = 96,
parameter NS_W = 4,
parameter LOG_RATE = 3,
parameter PIPELINE_OUTPUT = 0
)
(
input wire logic input_clk,
input wire logic input_rst,
input wire logic output_clk,
input wire logic output_rst,
input wire logic sample_clk,
/*
* Timestamp inputs from source PTP clock
*/
input wire logic [TS_W-1:0] input_ts,
input wire logic input_ts_step,
/*
* Timestamp outputs
*/
output wire logic [TS_W-1:0] output_ts,
output wire logic output_ts_step,
/*
* PPS output
*/
output wire logic output_pps,
output wire logic output_pps_str,
/*
* Status
*/
output wire logic locked
);
// Check configuration
if (TS_W != 64 && TS_W != 96)
$fatal(0, "Error: Timestamp width must be 64 or 96");
localparam FNS_W = 16;
localparam TS_NS_W = TS_W == 96 ? 30 : 48;
localparam TS_FNS_W = FNS_W > 16 ? 16 : FNS_W;
localparam CMP_FNS_W = 4;
localparam PHASE_CNT_W = LOG_RATE;
localparam PHASE_ACC_W = PHASE_CNT_W+16;
localparam LOG_SAMPLE_SYNC_RATE = LOG_RATE;
localparam SAMPLE_ACC_W = LOG_SAMPLE_SYNC_RATE+2;
localparam LOG_PHASE_ERR_RATE = 4;
localparam PHASE_ERR_ACC_W = LOG_PHASE_ERR_RATE+2;
localparam DEST_SYNC_LOCK_W = 7;
localparam FREQ_LOCK_W = 8;
localparam PTP_LOCK_W = 8;
localparam TIME_ERR_INT_W = NS_W+FNS_W;
localparam [30:0] NS_PER_S = 31'd1_000_000_000;
logic [NS_W+FNS_W-1:0] period_ns_reg = '0, period_ns_next;
logic [NS_W+FNS_W-1:0] period_ns_delay_reg = '0, period_ns_delay_next;
logic [31+FNS_W-1:0] period_ns_ovf_reg = '0, period_ns_ovf_next;
logic [47:0] src_ts_s_capt_reg = '0;
logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_capt_reg = '0;
logic src_ts_step_capt_reg = '0;
logic [47:0] dest_ts_s_capt_reg = '0;
logic [TS_NS_W+CMP_FNS_W-1:0] dest_ts_ns_capt_reg = '0;
logic [47:0] src_ts_s_sync_reg = '0;
logic [TS_NS_W+CMP_FNS_W-1:0] src_ts_ns_sync_reg = '0;
logic src_ts_step_sync_reg = '0;
logic [47:0] ts_s_reg = '0, ts_s_next;
logic [TS_NS_W+FNS_W-1:0] ts_ns_reg = '0, ts_ns_next;
logic [TS_NS_W+FNS_W-1:0] ts_ns_inc_reg = '0, ts_ns_inc_next;
logic [TS_NS_W+FNS_W+1-1:0] ts_ns_ovf_reg = {TS_NS_W+FNS_W+1{1'b1}}, ts_ns_ovf_next;
logic ts_step_reg = 1'b0, ts_step_next;
logic pps_reg = 1'b0;
logic pps_str_reg = 1'b0;
logic [47:0] ts_s_pipe_reg[0:PIPELINE_OUTPUT-1];
logic [TS_NS_W+CMP_FNS_W-1:0] ts_ns_pipe_reg[0:PIPELINE_OUTPUT-1];
logic ts_step_pipe_reg[0:PIPELINE_OUTPUT-1];
logic pps_pipe_reg[0:PIPELINE_OUTPUT-1];
logic [PHASE_CNT_W-1:0] src_phase_reg = '0;
logic [PHASE_ACC_W-1:0] dest_phase_reg = '0, dest_phase_next;
logic [PHASE_ACC_W-1:0] dest_phase_inc_reg = '0, dest_phase_inc_next;
logic src_sync_reg = 1'b0;
logic src_update_reg = 1'b0;
logic src_phase_sync_reg = 1'b0;
logic dest_sync_reg = 1'b0;
logic dest_update_reg = 1'b0, dest_update_next;
logic dest_phase_sync_reg = 1'b0;
logic src_sync_sync1_reg = 1'b0;
logic src_sync_sync2_reg = 1'b0;
logic src_sync_sync3_reg = 1'b0;
logic src_phase_sync_sync1_reg = 1'b0;
logic src_phase_sync_sync2_reg = 1'b0;
logic src_phase_sync_sync3_reg = 1'b0;
logic dest_phase_sync_sync1_reg = 1'b0;
logic dest_phase_sync_sync2_reg = 1'b0;
logic dest_phase_sync_sync3_reg = 1'b0;
logic src_sync_sample_sync1_reg = 1'b0;
logic src_sync_sample_sync2_reg = 1'b0;
logic src_sync_sample_sync3_reg = 1'b0;
logic dest_sync_sample_sync1_reg = 1'b0;
logic dest_sync_sample_sync2_reg = 1'b0;
logic dest_sync_sample_sync3_reg = 1'b0;
logic [SAMPLE_ACC_W-1:0] sample_acc_reg = '0;
logic [SAMPLE_ACC_W-1:0] sample_acc_out_reg = '0;
logic [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = '0;
logic sample_update_reg = 1'b0;
logic sample_update_sync1_reg = 1'b0;
logic sample_update_sync2_reg = 1'b0;
logic sample_update_sync3_reg = 1'b0;
if (PIPELINE_OUTPUT > 0) begin
// pipeline
(* shreg_extract = "no" *)
logic [TS_W-1:0] output_ts_reg[0:PIPELINE_OUTPUT-1];
(* shreg_extract = "no" *)
logic output_ts_step_reg[0:PIPELINE_OUTPUT-1];
(* shreg_extract = "no" *)
logic output_pps_reg[0:PIPELINE_OUTPUT-1];
(* shreg_extract = "no" *)
logic output_pps_str_reg[0:PIPELINE_OUTPUT-1];
assign output_ts = output_ts_reg[PIPELINE_OUTPUT-1];
assign output_ts_step = output_ts_step_reg[PIPELINE_OUTPUT-1];
assign output_pps = output_pps_reg[PIPELINE_OUTPUT-1];
assign output_pps_str = output_pps_str_reg[PIPELINE_OUTPUT-1];
initial begin
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
output_ts_reg[i] = 0;
output_ts_step_reg[i] = 1'b0;
output_pps_reg[i] = 1'b0;
output_pps_str_reg[i] = 1'b0;
end
end
always_ff @(posedge output_clk) begin
if (TS_W == 96) begin
output_ts_reg[0][95:48] <= ts_s_reg;
output_ts_reg[0][47:46] <= 2'b00;
output_ts_reg[0][45:0] <= 46'({ts_ns_reg, 16'd0} >> FNS_W);
end else if (TS_W == 64) begin
output_ts_reg[0] <= 64'({ts_ns_reg, 16'd0} >> FNS_W);
end
output_ts_step_reg[0] <= ts_step_reg;
output_pps_reg[0] <= pps_reg;
output_pps_str_reg[0] <= pps_str_reg;
for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
output_ts_reg[i+1] <= output_ts_reg[i];
output_ts_step_reg[i+1] <= output_ts_step_reg[i];
output_pps_reg[i+1] <= output_pps_reg[i];
output_pps_str_reg[i+1] <= output_pps_str_reg[i];
end
if (output_rst) begin
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
output_ts_reg[i] <= 0;
output_ts_step_reg[i] <= 1'b0;
output_pps_reg[i] <= 1'b0;
output_pps_str_reg[i] <= 1'b0;
end
end
end
end else begin
if (TS_W == 96) begin
assign output_ts[95:48] = ts_s_reg;
assign output_ts[47:46] = 2'b00;
assign output_ts[45:0] = 46'({ts_ns_reg, 16'd0} >> FNS_W);
end else if (TS_W == 64) begin
assign output_ts = 64'({ts_ns_reg, 16'd0} >> FNS_W);
end
assign output_ts_step = ts_step_reg;
assign output_pps = pps_reg;
assign output_pps_str = pps_str_reg;
end
initial begin
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
ts_s_pipe_reg[i] = 0;
ts_ns_pipe_reg[i] = 0;
ts_step_pipe_reg[i] = 1'b0;
pps_pipe_reg[i] = 1'b0;
end
end
// source PTP clock capture and sync logic
logic input_ts_step_reg = 1'b0;
always_ff @(posedge input_clk) begin
input_ts_step_reg <= input_ts_step || input_ts_step_reg;
src_phase_sync_reg <= input_ts[16+8];
{src_update_reg, src_phase_reg} <= src_phase_reg+1;
if (src_update_reg) begin
// capture source TS
if (TS_W == 96) begin
src_ts_s_capt_reg <= 48'(input_ts >> 48);
src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts[45:0] >> (16-CMP_FNS_W));
end else begin
src_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(input_ts >> (16-CMP_FNS_W));
end
src_ts_step_capt_reg <= input_ts_step || input_ts_step_reg;
input_ts_step_reg <= 1'b0;
src_sync_reg <= !src_sync_reg;
end
if (input_rst) begin
input_ts_step_reg <= 1'b0;
src_phase_reg <= {PHASE_CNT_W{1'b0}};
src_sync_reg <= 1'b0;
src_update_reg <= 1'b0;
end
end
// CDC logic
always_ff @(posedge output_clk) begin
src_sync_sync1_reg <= src_sync_reg;
src_sync_sync2_reg <= src_sync_sync1_reg;
src_sync_sync3_reg <= src_sync_sync2_reg;
src_phase_sync_sync1_reg <= src_phase_sync_reg;
src_phase_sync_sync2_reg <= src_phase_sync_sync1_reg;
src_phase_sync_sync3_reg <= src_phase_sync_sync2_reg;
dest_phase_sync_sync1_reg <= dest_phase_sync_reg;
dest_phase_sync_sync2_reg <= dest_phase_sync_sync1_reg;
dest_phase_sync_sync3_reg <= dest_phase_sync_sync2_reg;
end
always_ff @(posedge sample_clk) begin
src_sync_sample_sync1_reg <= src_sync_reg;
src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg;
src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg;
dest_sync_sample_sync1_reg <= dest_sync_reg;
dest_sync_sample_sync2_reg <= dest_sync_sample_sync1_reg;
dest_sync_sample_sync3_reg <= dest_sync_sample_sync2_reg;
end
logic edge_1_reg = 1'b0;
logic edge_2_reg = 1'b0;
logic [3:0] active_reg = '0;
always_ff @(posedge sample_clk) begin
// phase and frequency detector
if (dest_sync_sample_sync2_reg && !dest_sync_sample_sync3_reg) begin
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
edge_1_reg <= 1'b0;
edge_2_reg <= 1'b0;
end else begin
edge_1_reg <= !edge_2_reg;
edge_2_reg <= 1'b0;
end
end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
edge_1_reg <= 1'b0;
edge_2_reg <= !edge_1_reg;
end
// accumulator
sample_acc_reg <= $signed(sample_acc_reg) + SAMPLE_ACC_W'($signed({1'b0, edge_2_reg})) - SAMPLE_ACC_W'($signed({1'b0, edge_1_reg}));
sample_cnt_reg <= sample_cnt_reg + 1;
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
active_reg[0] <= 1'b1;
end
if (sample_cnt_reg == 0) begin
active_reg <= {active_reg[2:0], src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg};
sample_acc_reg <= SAMPLE_ACC_W'($signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg}));
sample_acc_out_reg <= sample_acc_reg;
if (active_reg != 0) begin
sample_update_reg <= !sample_update_reg;
end
end
end
always_ff @(posedge output_clk) begin
sample_update_sync1_reg <= sample_update_reg;
sample_update_sync2_reg <= sample_update_sync1_reg;
sample_update_sync3_reg <= sample_update_sync2_reg;
end
logic [SAMPLE_ACC_W-1:0] sample_acc_sync_reg = '0;
logic sample_acc_sync_valid_reg = '0;
logic [PHASE_ACC_W-1:0] dest_err_int_reg = '0, dest_err_int_next;
logic [1:0] dest_ovf;
logic [DEST_SYNC_LOCK_W-1:0] dest_sync_lock_count_reg = '0, dest_sync_lock_count_next;
logic dest_sync_locked_reg = 1'b0, dest_sync_locked_next;
always_comb begin
{dest_update_next, dest_phase_next} = dest_phase_reg + dest_phase_inc_reg;
dest_phase_inc_next = dest_phase_inc_reg;
dest_err_int_next = dest_err_int_reg;
dest_sync_lock_count_next = dest_sync_lock_count_reg;
dest_sync_locked_next = dest_sync_locked_reg;
dest_ovf = 0;
if (sample_acc_sync_valid_reg) begin
// updated sampled dest_phase error
// time integral of error
if (dest_sync_locked_reg) begin
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg));
end else begin
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + (PHASE_ACC_W+2)'($signed(sample_acc_sync_reg) * 2**6);
end
// saturate
if (dest_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
dest_err_int_next = {PHASE_ACC_W{1'b0}};
end else if (dest_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
dest_err_int_next = {PHASE_ACC_W{1'b1}};
end
// compute output
if (dest_sync_locked_reg) begin
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4);
end else begin
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**10);
end
// saturate
if (dest_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
dest_phase_inc_next = {PHASE_ACC_W{1'b0}};
end else if (dest_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
dest_phase_inc_next = {PHASE_ACC_W{1'b1}};
end
// locked status
if ($signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:2]) == 0 || $signed(sample_acc_sync_reg[SAMPLE_ACC_W-1:1]) == -1) begin
if (dest_sync_lock_count_reg == {DEST_SYNC_LOCK_W{1'b1}}) begin
dest_sync_locked_next = 1'b1;
end else begin
dest_sync_lock_count_next = dest_sync_lock_count_reg + 1;
end
end else begin
dest_sync_lock_count_next = '0;
dest_sync_locked_next = 1'b0;
end
end
end
logic [PHASE_ERR_ACC_W-1:0] phase_err_acc_reg = '0;
logic [PHASE_ERR_ACC_W-1:0] phase_err_out_reg = '0;
logic [LOG_PHASE_ERR_RATE-1:0] phase_err_cnt_reg = '0;
logic phase_err_out_valid_reg = '0;
logic phase_edge_1_reg = 1'b0;
logic phase_edge_2_reg = 1'b0;
logic [5:0] phase_active_reg = '0;
logic ts_sync_valid_reg = 1'b0;
always_ff @(posedge output_clk) begin
dest_phase_reg <= dest_phase_next;
dest_phase_inc_reg <= dest_phase_inc_next;
dest_update_reg <= dest_update_next;
sample_acc_sync_valid_reg <= 1'b0;
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
// latch in synchronized counts from phase detector
sample_acc_sync_reg <= sample_acc_out_reg;
sample_acc_sync_valid_reg <= 1'b1;
end
if (PIPELINE_OUTPUT > 0) begin
dest_phase_sync_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1][8+FNS_W];
end else begin
dest_phase_sync_reg <= ts_ns_reg[8+FNS_W];
end
// phase and frequency detector
if (dest_phase_sync_sync2_reg && !dest_phase_sync_sync3_reg) begin
if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
phase_edge_1_reg <= 1'b0;
phase_edge_2_reg <= 1'b0;
end else begin
phase_edge_1_reg <= !phase_edge_2_reg;
phase_edge_2_reg <= 1'b0;
end
end else if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
phase_edge_1_reg <= 1'b0;
phase_edge_2_reg <= !phase_edge_1_reg;
end
// accumulator
phase_err_acc_reg <= $signed(phase_err_acc_reg) + PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg})) - PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_1_reg}));
phase_err_cnt_reg <= phase_err_cnt_reg + 1;
if (src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg) begin
phase_active_reg[0] <= 1'b1;
end
phase_err_out_valid_reg <= 1'b0;
if (phase_err_cnt_reg == 0) begin
phase_active_reg <= {phase_active_reg[4:0], src_phase_sync_sync2_reg && !src_phase_sync_sync3_reg};
phase_err_acc_reg <= PHASE_ERR_ACC_W'($signed({1'b0, phase_edge_2_reg}) - $signed({1'b0, phase_edge_1_reg}));
phase_err_out_reg <= phase_err_acc_reg;
if (phase_active_reg != 0) begin
phase_err_out_valid_reg <= 1'b1;
end
end
if (dest_update_reg) begin
// capture local TS
if (PIPELINE_OUTPUT > 0) begin
dest_ts_s_capt_reg <= ts_s_pipe_reg[PIPELINE_OUTPUT-1];
dest_ts_ns_capt_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1];
end else begin
dest_ts_s_capt_reg <= ts_s_reg;
dest_ts_ns_capt_reg <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-CMP_FNS_W);
end
dest_sync_reg <= !dest_sync_reg;
end
ts_sync_valid_reg <= 1'b0;
if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin
// store captured source TS
if (TS_W == 96) begin
src_ts_s_sync_reg <= src_ts_s_capt_reg;
end
src_ts_ns_sync_reg <= src_ts_ns_capt_reg;
src_ts_step_sync_reg <= src_ts_step_capt_reg;
ts_sync_valid_reg <= 1'b1;
end
dest_err_int_reg <= dest_err_int_next;
dest_sync_lock_count_reg <= dest_sync_lock_count_next;
dest_sync_locked_reg <= dest_sync_locked_next;
if (output_rst) begin
dest_phase_reg <= {PHASE_ACC_W{1'b0}};
dest_phase_inc_reg <= {PHASE_ACC_W{1'b0}};
dest_sync_reg <= 1'b0;
dest_update_reg <= 1'b0;
dest_err_int_reg <= '0;
dest_sync_lock_count_reg <= '0;
dest_sync_locked_reg <= 1'b0;
ts_sync_valid_reg <= 1'b0;
end
end
logic ts_diff_reg = 1'b0, ts_diff_next;
logic ts_diff_valid_reg = 1'b0, ts_diff_valid_next;
logic [3:0] mismatch_cnt_reg = '0, mismatch_cnt_next;
logic load_ts_reg = 1'b0, load_ts_next;
logic [9+CMP_FNS_W-1:0] ts_ns_diff_reg = '0, ts_ns_diff_next;
logic [TIME_ERR_INT_W-1:0] time_err_int_reg = '0, time_err_int_next;
logic [1:0] ptp_ovf;
logic [FREQ_LOCK_W-1:0] freq_lock_count_reg = '0, freq_lock_count_next;
logic freq_locked_reg = 1'b0, freq_locked_next;
logic [PTP_LOCK_W-1:0] ptp_lock_count_reg = '0, ptp_lock_count_next;
logic ptp_locked_reg = 1'b0, ptp_locked_next;
logic gain_sel_reg = '0, gain_sel_next;
assign locked = ptp_locked_reg && freq_locked_reg && dest_sync_locked_reg;
always_comb begin
period_ns_next = period_ns_reg;
ts_s_next = ts_s_reg;
ts_ns_next = ts_ns_reg;
ts_ns_inc_next = ts_ns_inc_reg;
ts_ns_ovf_next = ts_ns_ovf_reg;
ts_step_next = '0;
ts_diff_next = 1'b0;
ts_diff_valid_next = 1'b0;
mismatch_cnt_next = mismatch_cnt_reg;
load_ts_next = load_ts_reg;
ts_ns_diff_next = ts_ns_diff_reg;
time_err_int_next = time_err_int_reg;
freq_lock_count_next = freq_lock_count_reg;
freq_locked_next = freq_locked_reg;
ptp_lock_count_next = ptp_lock_count_reg;
ptp_locked_next = ptp_locked_reg;
gain_sel_next = gain_sel_reg;
// PTP clock
period_ns_delay_next = period_ns_reg;
if (TS_W == 96) begin
// 96 bit timestamp
ts_ns_inc_next = ts_ns_inc_reg + (TS_NS_W+FNS_W)'(period_ns_delay_reg);
ts_ns_ovf_next = ts_ns_inc_reg - (TS_NS_W+FNS_W)'(period_ns_ovf_reg);
ts_ns_next = ts_ns_inc_reg;
period_ns_ovf_next = (31+FNS_W)'({NS_PER_S, {FNS_W{1'b0}}}) - (31+FNS_W)'(period_ns_reg);
if (!ts_ns_ovf_reg[30+FNS_W]) begin
// if the overflow lookahead did not borrow, one second has elapsed
// increment seconds field, pre-compute normal increment, force overflow lookahead borrow bit set
ts_ns_inc_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0] + (TS_NS_W+FNS_W)'(period_ns_delay_reg);
ts_ns_ovf_next[30+FNS_W] = 1'b1;
ts_ns_next = ts_ns_ovf_reg[TS_NS_W+FNS_W-1:0];
ts_s_next = ts_s_reg + 1;
end
end else if (TS_W == 64) begin
// 64 bit timestamp
ts_ns_next = ts_ns_reg + (TS_NS_W+FNS_W)'(period_ns_reg);
end
if (ts_sync_valid_reg) begin
// Read new value
if (TS_W == 96) begin
if (src_ts_step_sync_reg || load_ts_reg) begin
// input stepped
load_ts_next = 1'b0;
ts_s_next = src_ts_s_sync_reg;
ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
ts_ns_inc_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
ts_ns_ovf_next[30+FNS_W] = 1'b1;
ts_step_next = 1;
end else begin
// input did not step
load_ts_next = 1'b0;
ts_diff_valid_next = freq_locked_reg;
end
// compute difference
ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg);
ts_diff_next = src_ts_s_sync_reg != dest_ts_s_capt_reg || src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
end else if (TS_W == 64) begin
if (src_ts_step_sync_reg || load_ts_reg) begin
// input stepped
load_ts_next = 1'b0;
ts_ns_next[TS_NS_W+FNS_W-1:9+FNS_W] = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
ts_step_next = 1;
end else begin
// input did not step
load_ts_next = 1'b0;
ts_diff_valid_next = freq_locked_reg;
end
// compute difference
ts_ns_diff_next = (9+CMP_FNS_W)'(src_ts_ns_sync_reg - dest_ts_ns_capt_reg);
ts_diff_next = src_ts_ns_sync_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W] != dest_ts_ns_capt_reg[TS_NS_W+CMP_FNS_W-1:9+CMP_FNS_W];
end
end
if (ts_diff_valid_reg) begin
if (ts_diff_reg) begin
if (&mismatch_cnt_reg) begin
load_ts_next = 1'b1;
mismatch_cnt_next = '0;
end else begin
mismatch_cnt_next = mismatch_cnt_reg + 1;
end
end else begin
mismatch_cnt_next = '0;
end
end
if (phase_err_out_valid_reg) begin
// coarse phase/frequency lock of PTP clock
if ($signed(phase_err_out_reg) > 4 || $signed(phase_err_out_reg) < -4) begin
if (freq_lock_count_reg != 0) begin
freq_lock_count_next = freq_lock_count_reg - 1;
end else begin
freq_locked_next = 1'b0;
end
end else begin
if (&freq_lock_count_reg) begin
freq_locked_next = 1'b1;
end else begin
freq_lock_count_next = freq_lock_count_reg + 1;
end
end
if (freq_locked_reg == 0) begin
ts_ns_diff_next = $signed(phase_err_out_reg) * 8 * 2**CMP_FNS_W;
ts_diff_valid_next = 1'b1;
end
end
if (ts_diff_valid_reg) begin
// PI control
// gain scheduling
casez (ts_ns_diff_reg[9+CMP_FNS_W-5 +: 5])
5'b01zzz: gain_sel_next = 1'b1;
5'b001zz: gain_sel_next = 1'b1;
5'b0001z: gain_sel_next = 1'b1;
5'b00001: gain_sel_next = 1'b1;
5'b00000: gain_sel_next = 1'b0;
5'b11111: gain_sel_next = 1'b0;
5'b11110: gain_sel_next = 1'b1;
5'b1110z: gain_sel_next = 1'b1;
5'b110zz: gain_sel_next = 1'b1;
5'b10zzz: gain_sel_next = 1'b1;
default: gain_sel_next = 1'b0;
endcase
// time integral of error
case (gain_sel_reg)
1'b0: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) / 2**4);
1'b1: {ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
endcase
// saturate
if (ptp_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
time_err_int_next = {TIME_ERR_INT_W{1'b0}};
end else if (ptp_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
time_err_int_next = {TIME_ERR_INT_W{1'b1}};
end
// compute output
case (gain_sel_reg)
1'b0: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**2);
1'b1: {ptp_ovf, period_ns_next} = $signed({1'b0, time_err_int_reg}) + (TIME_ERR_INT_W+2)'($signed(ts_ns_diff_reg) * 2**6);
endcase
// saturate
if (ptp_ovf[1]) begin
// sign bit set indicating underflow across zero; saturate to zero
period_ns_next = {NS_W+FNS_W{1'b0}};
end else if (ptp_ovf[0]) begin
// sign bit clear but carry bit set indicating overflow; saturate to all 1
period_ns_next = {NS_W+FNS_W{1'b1}};
end
// adjust period if integrator is saturated
if (time_err_int_reg == 0) begin
period_ns_next = {NS_W+FNS_W{1'b0}};
end else if (~time_err_int_reg == 0) begin
period_ns_next = {NS_W+FNS_W{1'b1}};
end
// locked status
if (!freq_locked_reg) begin
ptp_lock_count_next = 0;
ptp_locked_next = 1'b0;
end else if (gain_sel_reg == 1'b0) begin
if (&ptp_lock_count_reg) begin
ptp_locked_next = 1'b1;
end else begin
ptp_lock_count_next = ptp_lock_count_reg + 1;
end
end else begin
if (ptp_lock_count_reg != 0) begin
ptp_lock_count_next = ptp_lock_count_reg - 1;
end else begin
ptp_locked_next = 1'b0;
end
end
end
end
always_ff @(posedge output_clk) begin
period_ns_reg <= period_ns_next;
period_ns_delay_reg <= period_ns_delay_next;
period_ns_ovf_reg <= period_ns_ovf_next;
ts_s_reg <= ts_s_next;
ts_ns_reg <= ts_ns_next;
ts_ns_inc_reg <= ts_ns_inc_next;
ts_ns_ovf_reg <= ts_ns_ovf_next;
ts_step_reg <= ts_step_next;
ts_diff_reg <= ts_diff_next;
ts_diff_valid_reg <= ts_diff_valid_next;
mismatch_cnt_reg <= mismatch_cnt_next;
load_ts_reg <= load_ts_next;
ts_ns_diff_reg <= ts_ns_diff_next;
time_err_int_reg <= time_err_int_next;
freq_lock_count_reg <= freq_lock_count_next;
freq_locked_reg <= freq_locked_next;
ptp_lock_count_reg <= ptp_lock_count_next;
ptp_locked_reg <= ptp_locked_next;
gain_sel_reg <= gain_sel_next;
// PPS output
pps_reg <= 1'b0;
if (TS_W == 96) begin
if (ts_ns_reg[29]) begin
pps_str_reg <= 1'b0;
end
if (!ts_ns_ovf_reg[30+FNS_W]) begin
pps_reg <= 1'b1;
pps_str_reg <= 1'b1;
end
end
// pipeline
if (PIPELINE_OUTPUT > 0) begin
ts_s_pipe_reg[0] <= ts_s_reg;
ts_ns_pipe_reg[0] <= (TS_NS_W+CMP_FNS_W)'(ts_ns_reg >> FNS_W-TS_FNS_W);
ts_step_pipe_reg[0] <= ts_step_reg;
pps_pipe_reg[0] <= pps_reg;
for (integer i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
ts_s_pipe_reg[i+1] <= ts_s_pipe_reg[i];
ts_ns_pipe_reg[i+1] <= ts_ns_pipe_reg[i];
ts_step_pipe_reg[i+1] <= ts_step_pipe_reg[i];
pps_pipe_reg[i+1] <= pps_pipe_reg[i];
end
end
if (output_rst) begin
period_ns_reg <= '0;
ts_s_reg <= '0;
ts_ns_reg <= '0;
ts_ns_inc_reg <= '0;
ts_ns_ovf_reg[30+FNS_W] <= 1'b1;
ts_step_reg <= '0;
pps_reg <= '0;
ts_diff_reg <= 1'b0;
ts_diff_valid_reg <= 1'b0;
mismatch_cnt_reg <= '0;
load_ts_reg <= '0;
time_err_int_reg <= '0;
freq_lock_count_reg <= '0;
freq_locked_reg <= 1'b0;
ptp_lock_count_reg <= '0;
ptp_locked_reg <= 1'b0;
for (integer i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
ts_s_pipe_reg[i] <= '0;
ts_ns_pipe_reg[i] <= '0;
ts_step_pipe_reg[i] <= 1'b0;
pps_pipe_reg[i] <= 1'b0;
end
end
end
endmodule
`resetall

View File

@@ -0,0 +1,50 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2020-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
DUT = taxi_ptp_clock_cdc
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = $(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += ../../../rtl/ptp/$(DUT).sv
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_TS_W := 96
export PARAM_NS_W := 4
export PARAM_LOG_RATE := 3
export PARAM_PIPELINE_OUTPUT := 0
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += -Wno-SELRANGE -Wno-WIDTH
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,491 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2020-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import logging
import os
from statistics import mean, stdev
import pytest
import cocotb_test.simulator
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Timer
from cocotb.utils import get_sim_steps, get_sim_time
from cocotbext.eth import PtpClock
class TB:
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.sample_clk, 9.9, units="ns").start())
if len(dut.input_ts) == 64:
self.ptp_clock = PtpClock(
ts_rel=dut.input_ts,
ts_step=dut.input_ts_step,
clock=dut.input_clk,
reset=dut.input_rst,
period_ns=6.4
)
else:
self.ptp_clock = PtpClock(
ts_tod=dut.input_ts,
ts_step=dut.input_ts_step,
clock=dut.input_clk,
reset=dut.input_rst,
period_ns=6.4
)
self.input_clock_period = 6.4
dut.input_clk.setimmediatevalue(0)
cocotb.start_soon(self._run_input_clock())
self.output_clock_period = 6.4
dut.output_clk.setimmediatevalue(0)
cocotb.start_soon(self._run_output_clock())
async def reset(self):
self.dut.input_rst.setimmediatevalue(0)
self.dut.output_rst.setimmediatevalue(0)
await RisingEdge(self.dut.input_clk)
await RisingEdge(self.dut.input_clk)
self.dut.input_rst.value = 1
self.dut.output_rst.value = 1
for k in range(10):
await RisingEdge(self.dut.input_clk)
self.dut.input_rst.value = 0
self.dut.output_rst.value = 0
for k in range(10):
await RisingEdge(self.dut.input_clk)
def set_input_clock_period(self, period):
self.input_clock_period = period
async def _run_input_clock(self):
period = None
steps_per_ns = get_sim_steps(1.0, 'ns')
while True:
if period != self.input_clock_period:
period = self.input_clock_period
t = Timer(int(steps_per_ns * period / 2.0))
await t
self.dut.input_clk.value = 1
await t
self.dut.input_clk.value = 0
def set_output_clock_period(self, period):
self.output_clock_period = period
async def _run_output_clock(self):
period = None
steps_per_ns = get_sim_steps(1.0, 'ns')
while True:
if period != self.output_clock_period:
period = self.output_clock_period
t = Timer(int(steps_per_ns * period / 2.0))
await t
self.dut.output_clk.value = 1
await t
self.dut.output_clk.value = 0
def get_input_ts_ns(self):
ts = self.dut.input_ts.value.integer
if len(self.dut.input_ts) == 64:
return ts/2**16*1e-9
else:
return (ts >> 48) + ((ts & 0xffffffffffff)/2**16*1e-9)
def get_output_ts_ns(self):
ts = self.dut.output_ts.value.integer
if len(self.dut.output_ts) == 64:
return ts/2**16*1e-9
else:
return (ts >> 48) + ((ts & 0xffffffffffff)/2**16*1e-9)
async def measure_ts_diff(self, N=100):
input_ts_lst = []
output_ts_lst = []
async def collect_timestamps(clk, get_ts, lst):
while True:
await RisingEdge(clk)
lst.append((get_sim_time('sec'), get_ts()))
input_cr = cocotb.start_soon(collect_timestamps(self.dut.input_clk, self.get_input_ts_ns, input_ts_lst))
output_cr = cocotb.start_soon(collect_timestamps(self.dut.output_clk, self.get_output_ts_ns, output_ts_lst))
for k in range(N):
await RisingEdge(self.dut.output_clk)
input_cr.kill()
output_cr.kill()
diffs = []
its1 = input_ts_lst.pop(0)
its2 = input_ts_lst.pop(0)
for ots in output_ts_lst:
while its2[0] < ots[0] and input_ts_lst:
its1 = its2
its2 = input_ts_lst.pop(0)
if its2[0] < ots[0]:
break
dt = its2[0] - its1[0]
dts = its2[1] - its1[1]
its = its1[1]+dts/dt*(ots[0]-its1[0])
diffs.append(ots[1] - its)
return diffs
@cocotb.test()
async def run_test(dut):
tb = TB(dut)
await tb.reset()
await RisingEdge(dut.input_clk)
tb.log.info("Same clock speed")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4)
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("10 ppm slower")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4*(1+.00001))
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("10 ppm faster")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4*(1-.00001))
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("200 ppm slower")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4*(1+.0002))
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("200 ppm faster")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4*(1-.0002))
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Coherent tracking (+/- 10 ppm)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4)
await RisingEdge(dut.input_clk)
period = 6.400
step = 0.000002
period_min = 6.4*(1-.00001)
period_max = 6.4*(1+.00001)
for i in range(500):
period += step
if period <= period_min:
step = abs(step)
if period >= period_max:
step = -abs(step)
tb.set_output_clock_period(period)
for i in range(200):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Coherent tracking (+/- 200 ppm)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.4)
await RisingEdge(dut.input_clk)
period = 6.400
step = 0.000002
period_min = 6.4*(1-.0002)
period_max = 6.4*(1+.0002)
for i in range(5000):
period += step
if period <= period_min:
step = abs(step)
if period >= period_max:
step = -abs(step)
tb.set_output_clock_period(period)
for i in range(20):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Slightly faster (6.3 ns)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.3)
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Slightly slower (6.5 ns)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(6.5)
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Significantly faster (250 MHz)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(4.0)
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
# diffs = await tb.measure_ts_diff()
# tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
# assert abs(mean(diffs)*1e9) < 5
# await RisingEdge(dut.input_clk)
# tb.log.info("Coherent tracking (250 MHz +0/-0.5%)")
# tb.set_input_clock_period(6.4)
# tb.set_output_clock_period(4.0)
# await RisingEdge(dut.input_clk)
# period = 4.000
# step = 0.0002
# period_min = 4.0
# period_max = 4.0*(1+.005)
# for i in range(5000):
# period += step
# if period <= period_min:
# step = abs(step)
# if period >= period_max:
# step = -abs(step)
# tb.set_output_clock_period(period)
# for i in range(20):
# await RisingEdge(dut.input_clk)
# assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Significantly slower (100 MHz)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(10.0)
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
tb.log.info("Significantly faster (390.625 MHz)")
tb.set_input_clock_period(6.4)
tb.set_output_clock_period(2.56)
await RisingEdge(dut.input_clk)
for i in range(100000):
await RisingEdge(dut.input_clk)
assert tb.dut.locked.value.integer
diffs = await tb.measure_ts_diff()
tb.log.info(f"Difference: {mean(diffs)*1e9} ns (stdev: {stdev(diffs)*1e9})")
assert abs(mean(diffs)*1e9) < 5
await RisingEdge(dut.input_clk)
await RisingEdge(dut.input_clk)
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("ts_w", [96, 64])
def test_taxi_ptp_clock_cdc(request, ts_w):
dut = "taxi_ptp_clock_cdc"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = dut
verilog_sources = [
os.path.join(rtl_dir, "ptp", f"{dut}.sv"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['TS_W'] = ts_w
parameters['NS_W'] = 4
parameters['LOG_RATE'] = 3
parameters['PIPELINE_OUTPUT'] = 0
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)