axi: Add AXI interconnect module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-11-11 12:40:07 -08:00
parent 34dd338acf
commit 3d5a9efdb8
8 changed files with 1879 additions and 0 deletions

View File

@@ -31,6 +31,7 @@ To facilitate the dual-license model, contributions to the project can only be a
* AXI
* SV interface for AXI
* AXI to AXI lite adapter
* Interconnect
* Register slice
* Width converter
* Synchronous FIFO

View File

@@ -0,0 +1,6 @@
taxi_axi_interconnect.sv
taxi_axi_interconnect_rd.sv
taxi_axi_interconnect_wr.sv
taxi_axi_if.sv
../lib/taxi/src/prim/rtl/taxi_arbiter.sv
../lib/taxi/src/prim/rtl/taxi_penc.sv

View File

@@ -0,0 +1,115 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 interconnect
*/
module taxi_axi_interconnect #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_RD = {M_COUNT{{S_COUNT{1'b1}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_WR = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.wr_slv s_axi_wr[S_COUNT],
taxi_axi_if.rd_slv s_axi_rd[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.wr_mst m_axi_wr[M_COUNT],
taxi_axi_if.rd_mst m_axi_rd[M_COUNT]
);
taxi_axi_interconnect_wr #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_WR),
.M_SECURE(M_SECURE)
)
wr_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interfaces
*/
.s_axi_wr(s_axi_wr),
/*
* AXI4 master interfaces
*/
.m_axi_wr(m_axi_wr)
);
taxi_axi_interconnect_rd #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT_RD),
.M_SECURE(M_SECURE)
)
rd_inst (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interfaces
*/
.s_axi_rd(s_axi_rd),
/*
* AXI4 master interfaces
*/
.m_axi_rd(m_axi_rd)
);
endmodule
`resetall

View File

@@ -0,0 +1,632 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 interconnect
*/
module taxi_axi_interconnect_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// Number of regions per master interface
parameter M_REGIONS = 1,
// TODO fix parametrization once verilator issue 5890 is fixed
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.rd_slv s_axi_rd[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.rd_mst m_axi_rd[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axi_rd.DATA_W;
localparam S_ADDR_W = s_axi_rd.ADDR_W;
localparam STRB_W = s_axi_rd.STRB_W;
localparam S_ID_W = s_axi_rd.ID_W;
localparam M_ID_W = m_axi_rd.ID_W;
localparam logic ARUSER_EN = s_axi_rd.ARUSER_EN && m_axi_rd.ARUSER_EN;
localparam ARUSER_W = s_axi_rd.ARUSER_W;
localparam logic RUSER_EN = s_axi_rd.RUSER_EN && m_axi_rd.RUSER_EN;
localparam RUSER_W = s_axi_rd.RUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
logic [ADDR_W-1:0] width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = 0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (s_axi_rd.ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axi_rd.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_rd.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
initial begin
if (M_REGIONS < 1 || M_REGIONS > 16) begin
$error("Error: M_REGIONS must be between 1 and 16 (instance %m)");
$finish;
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
/* verilator lint_off UNSIGNED */
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
/* verilator lint_on UNSIGNED */
end
$display("Addressing configuration for axi_interconnect instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [2:0]
STATE_IDLE = 3'd0,
STATE_DECODE = 3'd1,
STATE_READ = 3'd2,
STATE_READ_DROP = 3'd3,
STATE_WAIT_IDLE = 3'd4;
logic [2:0] state_reg = STATE_IDLE, state_next;
logic match;
logic [CL_M_COUNT_INT-1:0] m_select_reg = '0, m_select_next;
logic [S_ID_W-1:0] axi_id_reg = '0, axi_id_next;
logic [ADDR_W-1:0] axi_addr_reg = '0, axi_addr_next;
logic axi_addr_valid_reg = 1'b0, axi_addr_valid_next;
logic [7:0] axi_len_reg = 8'd0, axi_len_next;
logic [2:0] axi_size_reg = 3'd0, axi_size_next;
logic [1:0] axi_burst_reg = 2'd0, axi_burst_next;
logic axi_lock_reg = 1'b0, axi_lock_next;
logic [3:0] axi_cache_reg = 4'd0, axi_cache_next;
logic [2:0] axi_prot_reg = 3'b000, axi_prot_next;
logic [3:0] axi_qos_reg = 4'd0, axi_qos_next;
logic [3:0] axi_region_reg = 4'd0, axi_region_next;
logic [ARUSER_W-1:0] axi_aruser_reg = '0, axi_aruser_next;
logic [S_COUNT-1:0] s_axi_arready_reg = '0, s_axi_arready_next;
logic [M_COUNT-1:0] m_axi_arvalid_reg = '0, m_axi_arvalid_next;
logic [M_COUNT-1:0] m_axi_rready_reg = '0, m_axi_rready_next;
// internal datapath
logic [S_ID_W-1:0] s_axi_rid_int;
logic [DATA_W-1:0] s_axi_rdata_int;
logic [1:0] s_axi_rresp_int;
logic s_axi_rlast_int;
logic [RUSER_W-1:0] s_axi_ruser_int;
logic [S_COUNT-1:0] s_axi_rvalid_int;
logic s_axi_rready_int_reg = 1'b0;
wire s_axi_rready_int_early;
// unpack interface array
wire [S_ID_W-1:0] s_axi_arid[S_COUNT];
wire [ADDR_W-1:0] s_axi_araddr[S_COUNT];
wire [7:0] s_axi_arlen[S_COUNT];
wire [2:0] s_axi_arsize[S_COUNT];
wire [1:0] s_axi_arburst[S_COUNT];
wire s_axi_arlock[S_COUNT];
wire [3:0] s_axi_arcache[S_COUNT];
wire [2:0] s_axi_prot[S_COUNT];
wire [3:0] s_axi_arqos[S_COUNT];
wire [ARUSER_W-1:0] s_axi_aruser[S_COUNT];
wire [S_COUNT-1:0] s_axi_arvalid;
wire [M_COUNT-1:0] m_axi_arready;
wire [M_ID_W-1:0] m_axi_rid[M_COUNT];
wire [DATA_W-1:0] m_axi_rdata[M_COUNT];
wire [1:0] m_axi_rresp[M_COUNT];
wire m_axi_rlast[M_COUNT];
wire [RUSER_W-1:0] m_axi_ruser[M_COUNT];
wire [M_COUNT-1:0] m_axi_rvalid;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axi_arid[n] = s_axi_rd[n].arid;
assign s_axi_araddr[n] = s_axi_rd[n].araddr;
assign s_axi_arlen[n] = s_axi_rd[n].arlen;
assign s_axi_arsize[n] = s_axi_rd[n].arsize;
assign s_axi_arburst[n] = s_axi_rd[n].arburst;
assign s_axi_arlock[n] = s_axi_rd[n].arlock;
assign s_axi_arcache[n] = s_axi_rd[n].arcache;
assign s_axi_prot[n] = s_axi_rd[n].arprot;
assign s_axi_arqos[n] = s_axi_rd[n].arqos;
assign s_axi_aruser[n] = s_axi_rd[n].aruser;
assign s_axi_arvalid[n] = s_axi_rd[n].arvalid;
assign s_axi_rd[n].arready = s_axi_arready_reg[n];
end
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign m_axi_rd[n].arid = axi_id_reg;
assign m_axi_rd[n].araddr = axi_addr_reg;
assign m_axi_rd[n].arlen = axi_len_reg;
assign m_axi_rd[n].arsize = axi_size_reg;
assign m_axi_rd[n].arburst = axi_burst_reg;
assign m_axi_rd[n].arlock = axi_lock_reg;
assign m_axi_rd[n].arcache = axi_cache_reg;
assign m_axi_rd[n].arprot = axi_prot_reg;
assign m_axi_rd[n].arqos = axi_qos_reg;
assign m_axi_rd[n].aruser = ARUSER_EN ? axi_aruser_reg : '0;
assign m_axi_rd[n].arvalid = m_axi_arvalid_reg[n];
assign m_axi_arready[n] = m_axi_rd[n].arready;
assign m_axi_rid[n] = m_axi_rd[n].rid;
assign m_axi_rdata[n] = m_axi_rd[n].rdata;
assign m_axi_rresp[n] = m_axi_rd[n].rresp;
assign m_axi_rlast[n] = m_axi_rd[n].rlast;
assign m_axi_ruser[n] = m_axi_rd[n].ruser;
assign m_axi_rvalid[n] = m_axi_rd[n].rvalid;
assign m_axi_rd[n].rready = m_axi_rready_reg[n];
end
// slave side mux
wire [CL_S_COUNT_INT-1:0] s_select;
wire [S_ID_W-1:0] current_s_axi_arid = s_axi_arid[s_select];
wire [ADDR_W-1:0] current_s_axi_araddr = s_axi_araddr[s_select];
wire [7:0] current_s_axi_arlen = s_axi_arlen[s_select];
wire [2:0] current_s_axi_arsize = s_axi_arsize[s_select];
wire [1:0] current_s_axi_arburst = s_axi_arburst[s_select];
wire current_s_axi_arlock = s_axi_arlock[s_select];
wire [3:0] current_s_axi_arcache = s_axi_arcache[s_select];
wire [2:0] current_s_axi_prot = s_axi_prot[s_select];
wire [3:0] current_s_axi_arqos = s_axi_arqos[s_select];
wire [ARUSER_W-1:0] current_s_axi_aruser = s_axi_aruser[s_select];
wire current_s_axi_arvalid = s_axi_arvalid[s_select];
wire current_s_axi_rready = s_axi_rready[s_select];
// master side mux
wire current_m_axi_arready = m_axi_arready[m_select_reg];
wire [M_ID_W-1:0] current_m_axi_rid = m_axi_rid[m_select_reg];
wire [DATA_W-1:0] current_m_axi_rdata = m_axi_rdata[m_select_reg];
wire [1:0] current_m_axi_rresp = m_axi_rresp[m_select_reg];
wire current_m_axi_rlast = m_axi_rlast[m_select_reg];
wire [RUSER_W-1:0] current_m_axi_ruser = m_axi_ruser[m_select_reg];
wire current_m_axi_rvalid = m_axi_rvalid[m_select_reg];
// arbiter instance
wire [S_COUNT-1:0] req;
wire [S_COUNT-1:0] ack;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT_INT-1:0] grant_index;
assign s_select = grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
arb_inst (
.clk(clk),
.rst(rst),
.req(req),
.ack(ack),
.grant(grant),
.grant_valid(grant_valid),
.grant_index(grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (req) begin
grant_valid_reg <= 1'b1;
end
if (ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign grant_valid = grant_valid_reg;
assign grant = '1;
assign grant_index = '0;
end
// req generation
assign req = s_axi_arvalid;
assign ack = state_reg == STATE_WAIT_IDLE ? '1 : '0;
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
m_select_next = m_select_reg;
axi_id_next = axi_id_reg;
axi_addr_next = axi_addr_reg;
axi_addr_valid_next = axi_addr_valid_reg;
axi_len_next = axi_len_reg;
axi_size_next = axi_size_reg;
axi_burst_next = axi_burst_reg;
axi_lock_next = axi_lock_reg;
axi_cache_next = axi_cache_reg;
axi_prot_next = axi_prot_reg;
axi_qos_next = axi_qos_reg;
axi_region_next = axi_region_reg;
axi_aruser_next = axi_aruser_reg;
s_axi_arready_next = '0;
m_axi_arvalid_next = m_axi_arvalid_reg & ~m_axi_arready;
m_axi_rready_next = '0;
s_axi_rid_int = axi_id_reg;
s_axi_rdata_int = current_m_axi_rdata;
s_axi_rresp_int = current_m_axi_rresp;
s_axi_rlast_int = current_m_axi_rlast;
s_axi_ruser_int = current_m_axi_ruser;
s_axi_rvalid_int = '0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for arbitration
axi_addr_valid_next = 1'b1;
axi_id_next = current_s_axi_arid;
axi_addr_next = current_s_axi_araddr;
axi_len_next = current_s_axi_arlen;
axi_size_next = current_s_axi_arsize;
axi_burst_next = current_s_axi_arburst;
axi_lock_next = current_s_axi_arlock;
axi_cache_next = current_s_axi_arcache;
axi_prot_next = current_s_axi_prot;
axi_qos_next = current_s_axi_arqos;
axi_aruser_next = current_s_axi_aruser;
if (grant_valid) begin
s_axi_arready_next[s_select] = 1'b1;
state_next = STATE_DECODE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
// decode state; determine master interface
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !axi_prot_reg[1]) && M_CONNECT_INT[i][s_select] && (axi_addr_reg >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = CL_M_COUNT_INT'(i);
match = 1'b1;
end
end
end
if (match) begin
m_axi_rready_next[m_select_reg] = s_axi_rready_int_early;
state_next = STATE_READ;
end else begin
// no match; return decode error
state_next = STATE_READ_DROP;
end
end
STATE_READ: begin
// read state; store and forward read response
m_axi_rready_next[m_select_reg] = s_axi_rready_int_early;
if (axi_addr_valid_reg) begin
m_axi_arvalid_next[m_select_reg] = 1'b1;
end
axi_addr_valid_next = 1'b0;
s_axi_rid_int = axi_id_reg;
s_axi_rdata_int = current_m_axi_rdata;
s_axi_rresp_int = current_m_axi_rresp;
s_axi_rlast_int = current_m_axi_rlast;
s_axi_ruser_int = current_m_axi_ruser;
if (m_axi_rready_reg != 0 && current_m_axi_rvalid) begin
s_axi_rvalid_int[s_select] = 1'b1;
if (current_m_axi_rlast) begin
m_axi_rready_next[m_select_reg] = 1'b0;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_READ;
end
end else begin
state_next = STATE_READ;
end
end
STATE_READ_DROP: begin
// read drop state; generate decode error read response
s_axi_rid_int = axi_id_reg;
s_axi_rdata_int = '0;
s_axi_rresp_int = 2'b11;
s_axi_rlast_int = axi_len_reg == 0;
s_axi_ruser_int = '0;
s_axi_rvalid_int[s_select] = 1'b1;
if (s_axi_rready_int_reg) begin
axi_len_next = axi_len_reg - 1;
if (axi_len_reg == 0) begin
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_READ_DROP;
end
end else begin
state_next = STATE_READ_DROP;
end
end
STATE_WAIT_IDLE: begin
// wait for idle state; wait untl grant valid is deasserted
if (grant_valid == 0 || ack != 0) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_IDLE;
end
end
default: begin
// invalid state
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axi_arready_reg <= s_axi_arready_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
m_select_reg <= m_select_next;
axi_id_reg <= axi_id_next;
axi_addr_reg <= axi_addr_next;
axi_addr_valid_reg <= axi_addr_valid_next;
axi_len_reg <= axi_len_next;
axi_size_reg <= axi_size_next;
axi_burst_reg <= axi_burst_next;
axi_lock_reg <= axi_lock_next;
axi_cache_reg <= axi_cache_next;
axi_prot_reg <= axi_prot_next;
axi_qos_reg <= axi_qos_next;
axi_region_reg <= axi_region_next;
axi_aruser_reg <= axi_aruser_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= '0;
m_axi_arvalid_reg <= '0;
m_axi_rready_reg <= '0;
end
end
// output datapath logic (R channel)
logic [S_ID_W-1:0] s_axi_rid_reg = '0;
logic [DATA_W-1:0] s_axi_rdata_reg = '0;
logic [1:0] s_axi_rresp_reg = 2'd0;
logic s_axi_rlast_reg = 1'b0;
logic [RUSER_W-1:0] s_axi_ruser_reg = 1'b0;
logic [S_COUNT-1:0] s_axi_rvalid_reg = '0, s_axi_rvalid_next;
logic [S_ID_W-1:0] temp_s_axi_rid_reg = '0;
logic [DATA_W-1:0] temp_s_axi_rdata_reg = '0;
logic [1:0] temp_s_axi_rresp_reg = 2'd0;
logic temp_s_axi_rlast_reg = 1'b0;
logic [RUSER_W-1:0] temp_s_axi_ruser_reg = 1'b0;
logic [S_COUNT-1:0] temp_s_axi_rvalid_reg = '0, temp_s_axi_rvalid_next;
// datapath control
logic store_axi_r_int_to_output;
logic store_axi_r_int_to_temp;
logic store_axi_r_temp_to_output;
wire [S_COUNT-1:0] s_axi_rready;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axi_rd[n].rid = s_axi_rid_reg;
assign s_axi_rd[n].rdata = s_axi_rdata_reg;
assign s_axi_rd[n].rresp = s_axi_rresp_reg;
assign s_axi_rd[n].rlast = s_axi_rlast_reg;
assign s_axi_rd[n].ruser = RUSER_EN ? s_axi_ruser_reg : '0;
assign s_axi_rd[n].rvalid = s_axi_rvalid_reg[n];
assign s_axi_rready[n] = s_axi_rd[n].rready;
end
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign s_axi_rready_int_early = (s_axi_rready & s_axi_rvalid_reg) != 0 || (temp_s_axi_rvalid_reg == 0 && (s_axi_rvalid_reg == 0 || s_axi_rvalid_int == 0));
always_comb begin
// transfer sink ready state to source
s_axi_rvalid_next = s_axi_rvalid_reg;
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
store_axi_r_int_to_output = 1'b0;
store_axi_r_int_to_temp = 1'b0;
store_axi_r_temp_to_output = 1'b0;
if (s_axi_rready_int_reg) begin
// input is ready
if ((s_axi_rready & s_axi_rvalid_reg) != 0 || s_axi_rvalid_reg == 0) begin
// output is ready or currently not valid, transfer data to output
s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_s_axi_rvalid_next = s_axi_rvalid_int;
store_axi_r_int_to_temp = 1'b1;
end
end else if ((s_axi_rready & s_axi_rvalid_reg) != 0) begin
// input is not ready, but output is ready
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
temp_s_axi_rvalid_next = '0;
store_axi_r_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
s_axi_rvalid_reg <= s_axi_rvalid_next;
s_axi_rready_int_reg <= s_axi_rready_int_early;
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
// datapath
if (store_axi_r_int_to_output) begin
s_axi_rid_reg <= s_axi_rid_int;
s_axi_rdata_reg <= s_axi_rdata_int;
s_axi_rresp_reg <= s_axi_rresp_int;
s_axi_rlast_reg <= s_axi_rlast_int;
s_axi_ruser_reg <= s_axi_ruser_int;
end else if (store_axi_r_temp_to_output) begin
s_axi_rid_reg <= temp_s_axi_rid_reg;
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
end
if (store_axi_r_int_to_temp) begin
temp_s_axi_rid_reg <= s_axi_rid_int;
temp_s_axi_rdata_reg <= s_axi_rdata_int;
temp_s_axi_rresp_reg <= s_axi_rresp_int;
temp_s_axi_rlast_reg <= s_axi_rlast_int;
temp_s_axi_ruser_reg <= s_axi_ruser_int;
end
if (rst) begin
s_axi_rvalid_reg <= '0;
s_axi_rready_int_reg <= 1'b0;
temp_s_axi_rvalid_reg <= '0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,666 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 interconnect
*/
module taxi_axi_interconnect_wr #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// Number of regions per master interface
parameter M_REGIONS = 1,
// TODO fix parametrization once verilator issue 5890 is fixed
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interfaces
*/
taxi_axi_if.wr_slv s_axi_wr[S_COUNT],
/*
* AXI4 master interfaces
*/
taxi_axi_if.wr_mst m_axi_wr[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axi_wr.DATA_W;
localparam S_ADDR_W = s_axi_wr.ADDR_W;
localparam STRB_W = s_axi_wr.STRB_W;
localparam S_ID_W = s_axi_wr.ID_W;
localparam M_ID_W = m_axi_wr.ID_W;
localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN;
localparam AWUSER_W = s_axi_wr.AWUSER_W;
localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN;
localparam WUSER_W = s_axi_wr.WUSER_W;
localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN;
localparam BUSER_W = s_axi_wr.BUSER_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [M_COUNT*M_REGIONS-1:0][31:0] M_ADDR_W_INT = M_ADDR_W;
localparam [M_COUNT-1:0][S_COUNT-1:0] M_CONNECT_INT = M_CONNECT;
localparam [M_COUNT-1:0] M_SECURE_INT = M_SECURE;
// default address computation
function [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] calcBaseAddrs(input [31:0] dummy);
logic [ADDR_W-1:0] base;
logic [ADDR_W-1:0] width;
logic [ADDR_W-1:0] size;
logic [ADDR_W-1:0] mask;
begin
calcBaseAddrs = '0;
base = 0;
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_W_INT[i];
mask = {ADDR_W{1'b1}} >> (ADDR_W - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i] = base;
base = base + size; // increment
end
end
end
endfunction
localparam [M_COUNT*M_REGIONS-1:0][ADDR_W-1:0] M_BASE_ADDR_INT = M_BASE_ADDR != 0 ? (M_COUNT*M_REGIONS*ADDR_W)'(M_BASE_ADDR) : calcBaseAddrs(0);
// check configuration
if (s_axi_wr.ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axi_wr.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_wr.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
initial begin
if (M_REGIONS < 1 || M_REGIONS > 16) begin
$error("Error: M_REGIONS must be between 1 and 16 (instance %m)");
$finish;
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
/* verilator lint_off UNSIGNED */
if (M_ADDR_W_INT[i] != 0 && (M_ADDR_W_INT[i] < $clog2(STRB_W) || M_ADDR_W_INT[i] > ADDR_W)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
/* verilator lint_on UNSIGNED */
end
$display("Addressing configuration for axi_interconnect instance %m");
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_W_INT[i] != 0) begin
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i] & (2**M_ADDR_W_INT[i]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (integer i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (integer j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i] != 0 && M_ADDR_W_INT[j] != 0) begin
if (((M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i])) <= (M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))))
&& ((M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j])) <= (M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i],
M_ADDR_W_INT[i],
M_BASE_ADDR_INT[i] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[i]),
M_BASE_ADDR_INT[i] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[i]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j],
M_ADDR_W_INT[j],
M_BASE_ADDR_INT[j] & ({ADDR_W{1'b1}} << M_ADDR_W_INT[j]),
M_BASE_ADDR_INT[j] | ({ADDR_W{1'b1}} >> (ADDR_W - M_ADDR_W_INT[j]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam logic [2:0]
STATE_IDLE = 3'd0,
STATE_DECODE = 3'd1,
STATE_WRITE = 3'd2,
STATE_WRITE_RESP = 3'd3,
STATE_WRITE_DROP = 3'd4,
STATE_WAIT_IDLE = 3'd5;
logic [2:0] state_reg = STATE_IDLE, state_next;
logic match;
logic [CL_M_COUNT_INT-1:0] m_select_reg = '0, m_select_next;
logic [S_ID_W-1:0] axi_id_reg = '0, axi_id_next;
logic [ADDR_W-1:0] axi_addr_reg = '0, axi_addr_next;
logic axi_addr_valid_reg = 1'b0, axi_addr_valid_next;
logic [7:0] axi_len_reg = 8'd0, axi_len_next;
logic [2:0] axi_size_reg = 3'd0, axi_size_next;
logic [1:0] axi_burst_reg = 2'd0, axi_burst_next;
logic axi_lock_reg = 1'b0, axi_lock_next;
logic [3:0] axi_cache_reg = 4'd0, axi_cache_next;
logic [2:0] axi_prot_reg = 3'b000, axi_prot_next;
logic [3:0] axi_qos_reg = 4'd0, axi_qos_next;
logic [3:0] axi_region_reg = 4'd0, axi_region_next;
logic [AWUSER_W-1:0] axi_awuser_reg = '0, axi_awuser_next;
logic [1:0] axi_bresp_reg = 2'b00, axi_bresp_next;
logic [BUSER_W-1:0] axi_buser_reg = '0, axi_buser_next;
logic [S_COUNT-1:0] s_axi_awready_reg = '0, s_axi_awready_next;
logic [S_COUNT-1:0] s_axi_wready_reg = '0, s_axi_wready_next;
logic [S_COUNT-1:0] s_axi_bvalid_reg = '0, s_axi_bvalid_next;
logic [M_COUNT-1:0] m_axi_awvalid_reg = '0, m_axi_awvalid_next;
logic [M_COUNT-1:0] m_axi_bready_reg = '0, m_axi_bready_next;
// internal datapath
logic [DATA_W-1:0] m_axi_wdata_int;
logic [STRB_W-1:0] m_axi_wstrb_int;
logic m_axi_wlast_int;
logic [WUSER_W-1:0] m_axi_wuser_int;
logic [M_COUNT-1:0] m_axi_wvalid_int;
logic m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
// unpack interface array
wire [S_ID_W-1:0] s_axi_awid[S_COUNT];
wire [ADDR_W-1:0] s_axi_addr[S_COUNT];
wire [7:0] s_axi_awlen[S_COUNT];
wire [2:0] s_axi_awsize[S_COUNT];
wire [1:0] s_axi_awburst[S_COUNT];
wire s_axi_awlock[S_COUNT];
wire [3:0] s_axi_awcache[S_COUNT];
wire [2:0] s_axi_awprot[S_COUNT];
wire [3:0] s_axi_awqos[S_COUNT];
wire [AWUSER_W-1:0] s_axi_awuser[S_COUNT];
wire [S_COUNT-1:0] s_axi_awvalid;
wire [DATA_W-1:0] s_axi_wdata[S_COUNT];
wire [STRB_W-1:0] s_axi_wstrb[S_COUNT];
wire s_axi_wlast[S_COUNT];
wire [WUSER_W-1:0] s_axi_wuser[S_COUNT];
wire [S_COUNT-1:0] s_axi_wvalid;
wire [S_COUNT-1:0] s_axi_bready;
wire [M_COUNT-1:0] m_axi_awready;
wire [M_ID_W-1:0] m_axi_bid[M_COUNT];
wire [1:0] m_axi_bresp[M_COUNT];
wire [BUSER_W-1:0] m_axi_buser[M_COUNT];
wire [M_COUNT-1:0] m_axi_bvalid;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axi_awid[n] = s_axi_wr[n].awid;
assign s_axi_addr[n] = s_axi_wr[n].awaddr;
assign s_axi_awlen[n] = s_axi_wr[n].awlen;
assign s_axi_awsize[n] = s_axi_wr[n].awsize;
assign s_axi_awburst[n] = s_axi_wr[n].awburst;
assign s_axi_awlock[n] = s_axi_wr[n].awlock;
assign s_axi_awcache[n] = s_axi_wr[n].awcache;
assign s_axi_awprot[n] = s_axi_wr[n].awprot;
assign s_axi_awqos[n] = s_axi_wr[n].awqos;
assign s_axi_awuser[n] = s_axi_wr[n].awuser;
assign s_axi_awvalid[n] = s_axi_wr[n].awvalid;
assign s_axi_wr[n].awready = s_axi_awready_reg[n];
assign s_axi_wdata[n] = s_axi_wr[n].wdata;
assign s_axi_wstrb[n] = s_axi_wr[n].wstrb;
assign s_axi_wlast[n] = s_axi_wr[n].wlast;
assign s_axi_wuser[n] = s_axi_wr[n].wuser;
assign s_axi_wvalid[n] = s_axi_wr[n].wvalid;
assign s_axi_wr[n].wready = s_axi_wready_reg[n];
assign s_axi_wr[n].bid = axi_id_reg;
assign s_axi_wr[n].bresp = axi_bresp_reg;
assign s_axi_wr[n].buser = BUSER_EN ? axi_buser_reg : '0;
assign s_axi_wr[n].bvalid = s_axi_bvalid_reg[n];
assign s_axi_bready[n] = s_axi_wr[n].bready;
end
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign m_axi_wr[n].awid = axi_id_reg;
assign m_axi_wr[n].awaddr = axi_addr_reg;
assign m_axi_wr[n].awlen = axi_len_reg;
assign m_axi_wr[n].awsize = axi_size_reg;
assign m_axi_wr[n].awburst = axi_burst_reg;
assign m_axi_wr[n].awlock = axi_lock_reg;
assign m_axi_wr[n].awcache = axi_cache_reg;
assign m_axi_wr[n].awprot = axi_prot_reg;
assign m_axi_wr[n].awqos = axi_qos_reg;
assign m_axi_wr[n].awuser = AWUSER_EN ? axi_awuser_reg : '0;
assign m_axi_wr[n].awvalid = m_axi_awvalid_reg[n];
assign m_axi_awready[n] = m_axi_wr[n].awready;
assign m_axi_bid[n] = m_axi_wr[n].bid;
assign m_axi_bresp[n] = m_axi_wr[n].bresp;
assign m_axi_buser[n] = m_axi_wr[n].buser;
assign m_axi_bvalid[n] = m_axi_wr[n].bvalid;
assign m_axi_wr[n].bready = m_axi_bready_reg[n];
end
// slave side mux
wire [CL_S_COUNT_INT-1:0] s_select;
wire [S_ID_W-1:0] current_s_axi_awid = s_axi_awid[s_select];
wire [ADDR_W-1:0] current_s_axi_addr = s_axi_addr[s_select];
wire [7:0] current_s_axi_awlen = s_axi_awlen[s_select];
wire [2:0] current_s_axi_awsize = s_axi_awsize[s_select];
wire [1:0] current_s_axi_awburst = s_axi_awburst[s_select];
wire current_s_axi_awlock = s_axi_awlock[s_select];
wire [3:0] current_s_axi_awcache = s_axi_awcache[s_select];
wire [2:0] current_s_axi_awprot = s_axi_awprot[s_select];
wire [3:0] current_s_axi_awqos = s_axi_awqos[s_select];
wire [AWUSER_W-1:0] current_s_axi_awuser = s_axi_awuser[s_select];
wire current_s_axi_awvalid = s_axi_awvalid[s_select];
wire [DATA_W-1:0] current_s_axi_wdata = s_axi_wdata[s_select];
wire [STRB_W-1:0] current_s_axi_wstrb = s_axi_wstrb[s_select];
wire current_s_axi_wlast = s_axi_wlast[s_select];
wire [WUSER_W-1:0] current_s_axi_wuser = s_axi_wuser[s_select];
wire current_s_axi_wvalid = s_axi_wvalid[s_select];
wire current_s_axi_bready = s_axi_bready[s_select];
// master side mux
wire current_m_axi_awready = m_axi_awready[m_select_reg];
wire current_m_axi_wready = m_axi_wready[m_select_reg];
wire [M_ID_W-1:0] current_m_axi_bid = m_axi_bid[m_select_reg];
wire [1:0] current_m_axi_bresp = m_axi_bresp[m_select_reg];
wire [BUSER_W-1:0] current_m_axi_buser = m_axi_buser[m_select_reg];
wire current_m_axi_bvalid = m_axi_bvalid[m_select_reg];
// arbiter instance
wire [S_COUNT-1:0] req;
wire [S_COUNT-1:0] ack;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT_INT-1:0] grant_index;
assign s_select = grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
arb_inst (
.clk(clk),
.rst(rst),
.req(req),
.ack(ack),
.grant(grant),
.grant_valid(grant_valid),
.grant_index(grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (req) begin
grant_valid_reg <= 1'b1;
end
if (ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign grant_valid = grant_valid_reg;
assign grant = '1;
assign grant_index = '0;
end
assign req = s_axi_awvalid;
assign ack = state_reg == STATE_WAIT_IDLE ? '1 : '0;
always_comb begin
state_next = STATE_IDLE;
match = 1'b0;
m_select_next = m_select_reg;
axi_id_next = axi_id_reg;
axi_addr_next = axi_addr_reg;
axi_addr_valid_next = axi_addr_valid_reg;
axi_len_next = axi_len_reg;
axi_size_next = axi_size_reg;
axi_burst_next = axi_burst_reg;
axi_lock_next = axi_lock_reg;
axi_cache_next = axi_cache_reg;
axi_prot_next = axi_prot_reg;
axi_qos_next = axi_qos_reg;
axi_region_next = axi_region_reg;
axi_awuser_next = axi_awuser_reg;
axi_bresp_next = axi_bresp_reg;
axi_buser_next = axi_buser_reg;
s_axi_awready_next = '0;
s_axi_wready_next = '0;
s_axi_bvalid_next = s_axi_bvalid_reg & ~s_axi_bready;
m_axi_awvalid_next = m_axi_awvalid_reg & ~m_axi_awready;
m_axi_bready_next = '0;
m_axi_wdata_int = current_s_axi_wdata;
m_axi_wstrb_int = current_s_axi_wstrb;
m_axi_wlast_int = current_s_axi_wlast;
m_axi_wuser_int = current_s_axi_wuser;
m_axi_wvalid_int = '0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for arbitration
axi_addr_valid_next = 1'b1;
axi_id_next = current_s_axi_awid;
axi_addr_next = current_s_axi_addr;
axi_len_next = current_s_axi_awlen;
axi_size_next = current_s_axi_awsize;
axi_burst_next = current_s_axi_awburst;
axi_lock_next = current_s_axi_awlock;
axi_cache_next = current_s_axi_awcache;
axi_prot_next = current_s_axi_awprot;
axi_qos_next = current_s_axi_awqos;
axi_awuser_next = current_s_axi_awuser;
if (grant_valid) begin
s_axi_awready_next[s_select] = 1'b1;
state_next = STATE_DECODE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
// decode state; determine master interface
match = 1'b0;
for (integer i = 0; i < M_COUNT; i = i + 1) begin
for (integer j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_W_INT[i*M_REGIONS+j] != 0 && (!M_SECURE_INT[i] || !axi_prot_reg[1]) && M_CONNECT_INT[i][s_select] && (axi_addr_reg >> M_ADDR_W_INT[i*M_REGIONS+j]) == (M_BASE_ADDR_INT[i*M_REGIONS+j] >> M_ADDR_W_INT[i*M_REGIONS+j])) begin
m_select_next = CL_M_COUNT_INT'(i);
match = 1'b1;
end
end
end
axi_bresp_next = 2'b11;
if (match) begin
s_axi_wready_next[s_select] = m_axi_wready_int_early;
state_next = STATE_WRITE;
end else begin
// no match; return decode error
s_axi_wready_next[s_select] = 1'b1;
state_next = STATE_WRITE_DROP;
end
end
STATE_WRITE: begin
// write state; store and forward write data
s_axi_wready_next[s_select] = m_axi_wready_int_early;
if (axi_addr_valid_reg) begin
m_axi_awvalid_next[m_select_reg] = 1'b1;
end
axi_addr_valid_next = 1'b0;
m_axi_wdata_int = current_s_axi_wdata;
m_axi_wstrb_int = current_s_axi_wstrb;
m_axi_wlast_int = current_s_axi_wlast;
m_axi_wuser_int = current_s_axi_wuser;
if (s_axi_wready_reg != 0 && current_s_axi_wvalid) begin
m_axi_wvalid_int[m_select_reg] = 1'b1;
if (current_s_axi_wlast) begin
s_axi_wready_next[s_select] = 1'b0;
m_axi_bready_next[m_select_reg] = s_axi_bvalid_reg == 0;
state_next = STATE_WRITE_RESP;
end else begin
state_next = STATE_WRITE;
end
end else begin
state_next = STATE_WRITE;
end
end
STATE_WRITE_RESP: begin
// write response state; store and forward write response
m_axi_bready_next[m_select_reg] = s_axi_bvalid_reg == 0;
if (m_axi_bready_reg != 0 && current_m_axi_bvalid) begin
m_axi_bready_next[m_select_reg] = 1'b0;
axi_bresp_next = current_m_axi_bresp;
s_axi_bvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_WRITE_RESP;
end
end
STATE_WRITE_DROP: begin
// write drop state; drop write data
s_axi_wready_next[s_select] = 1'b1;
axi_addr_valid_next = 1'b0;
if (s_axi_wready_reg != 0 && current_s_axi_wvalid && current_s_axi_wlast) begin
s_axi_wready_next[s_select] = 1'b0;
s_axi_bvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_WRITE_DROP;
end
end
STATE_WAIT_IDLE: begin
// wait for idle state; wait untl grant valid is deasserted
if (grant_valid == 0 || ack != 0) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_IDLE;
end
end
default: begin
// invalid state
state_next = STATE_IDLE;
end
endcase
end
always_ff @(posedge clk) begin
state_reg <= state_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
m_select_reg <= m_select_next;
axi_id_reg <= axi_id_next;
axi_addr_reg <= axi_addr_next;
axi_addr_valid_reg <= axi_addr_valid_next;
axi_len_reg <= axi_len_next;
axi_size_reg <= axi_size_next;
axi_burst_reg <= axi_burst_next;
axi_lock_reg <= axi_lock_next;
axi_cache_reg <= axi_cache_next;
axi_prot_reg <= axi_prot_next;
axi_qos_reg <= axi_qos_next;
axi_region_reg <= axi_region_next;
axi_awuser_reg <= axi_awuser_next;
axi_bresp_reg <= axi_bresp_next;
axi_buser_reg <= axi_buser_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= '0;
s_axi_wready_reg <= '0;
s_axi_bvalid_reg <= '0;
m_axi_awvalid_reg <= '0;
m_axi_bready_reg <= '0;
end
end
// output datapath logic (W channel)
logic [DATA_W-1:0] m_axi_wdata_reg = '0;
logic [STRB_W-1:0] m_axi_wstrb_reg = '0;
logic m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] m_axi_wuser_reg = 1'b0;
logic [M_COUNT-1:0] m_axi_wvalid_reg = '0, m_axi_wvalid_next;
logic [DATA_W-1:0] temp_m_axi_wdata_reg = '0;
logic [STRB_W-1:0] temp_m_axi_wstrb_reg = '0;
logic temp_m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] temp_m_axi_wuser_reg = 1'b0;
logic [M_COUNT-1:0] temp_m_axi_wvalid_reg = '0, temp_m_axi_wvalid_next;
// datapath control
logic store_axi_w_int_to_output;
logic store_axi_w_int_to_temp;
logic store_axi_w_temp_to_output;
wire [M_COUNT-1:0] m_axi_wready;
for (genvar n = 0; n < M_COUNT; n = n + 1) begin
assign m_axi_wr[n].wdata = m_axi_wdata_reg;
assign m_axi_wr[n].wstrb = m_axi_wstrb_reg;
assign m_axi_wr[n].wlast = m_axi_wlast_reg;
assign m_axi_wr[n].wuser = WUSER_EN ? m_axi_wuser_reg : '0;
assign m_axi_wr[n].wvalid = m_axi_wvalid_reg[n];
assign m_axi_wready[n] = m_axi_wr[n].wready;
end
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = (m_axi_wready & m_axi_wvalid_reg) != 0 || (temp_m_axi_wvalid_reg == 0 && (m_axi_wvalid_reg == 0 || m_axi_wvalid_int == 0));
always_comb begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if ((m_axi_wready & m_axi_wvalid_reg) != 0 || m_axi_wvalid_reg == 0) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if ((m_axi_wready & m_axi_wvalid_reg) != 0) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = '0;
store_axi_w_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
m_axi_wuser_reg <= m_axi_wuser_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
temp_m_axi_wuser_reg <= m_axi_wuser_int;
end
if (rst) begin
m_axi_wvalid_reg <= '0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= '0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,69 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2020-2025
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
RTL_DIR = ../../rtl
LIB_DIR = ../../lib
TAXI_SRC_DIR = $(LIB_DIR)/taxi/src
DUT = taxi_axi_interconnect
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += $(RTL_DIR)/$(DUT).f
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
REG_TYPE ?= 1
# module parameters
export PARAM_DATA_W := 32
export PARAM_ADDR_W := 32
export PARAM_STRB_W := $(shell expr $(PARAM_DATA_W) / 8 )
export PARAM_S_ID_W := 8
export PARAM_M_ID_W := $(shell expr $(PARAM_S_ID_W) + 2 )
export PARAM_AWUSER_EN := 0
export PARAM_AWUSER_W := 1
export PARAM_WUSER_EN := 0
export PARAM_WUSER_W := 1
export PARAM_BUSER_EN := 0
export PARAM_BUSER_W := 1
export PARAM_ARUSER_EN := 0
export PARAM_ARUSER_W := 1
export PARAM_RUSER_EN := 0
export PARAM_RUSER_W := 1
export PARAM_M_REGIONS := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += -Wno-WIDTH
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,275 @@
#!/usr/bin/env python3
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2020-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Timer
from cocotb.regression import TestFactory
from cocotbext.axi import AxiBus, AxiMaster, AxiRam
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 10, units="ns").start())
self.axi_master = [AxiMaster(AxiBus.from_entity(ch), dut.clk, dut.rst) for ch in dut.s_axi]
self.axi_ram = [AxiRam(AxiBus.from_entity(ch), dut.clk, dut.rst, size=2**16) for ch in dut.m_axi]
def set_idle_generator(self, generator=None):
if generator:
for master in self.axi_master:
master.write_if.aw_channel.set_pause_generator(generator())
master.write_if.w_channel.set_pause_generator(generator())
master.read_if.ar_channel.set_pause_generator(generator())
for ram in self.axi_ram:
ram.write_if.b_channel.set_pause_generator(generator())
ram.read_if.r_channel.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
for master in self.axi_master:
master.write_if.b_channel.set_pause_generator(generator())
master.read_if.r_channel.set_pause_generator(generator())
for ram in self.axi_ram:
ram.write_if.aw_channel.set_pause_generator(generator())
ram.write_if.w_channel.set_pause_generator(generator())
ram.read_if.ar_channel.set_pause_generator(generator())
async def cycle_reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def run_test_write(dut, data_in=None, idle_inserter=None, backpressure_inserter=None, size=None, s=0, m=0):
tb = TB(dut)
byte_lanes = tb.axi_master[s].write_if.byte_lanes
max_burst_size = tb.axi_master[s].write_if.max_burst_size
if size is None:
size = max_burst_size
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in list(range(1, byte_lanes*2))+[1024]:
for offset in list(range(byte_lanes, byte_lanes*2))+list(range(4096-byte_lanes, 4096)):
tb.log.info("length %d, offset %d, size %d", length, offset, size)
ram_addr = offset+0x1000
addr = ram_addr + m*0x1000000
test_data = bytearray([x % 256 for x in range(length)])
tb.axi_ram[m].write(ram_addr-128, b'\xaa'*(length+256))
await tb.axi_master[s].write(addr, test_data, size=size)
tb.log.debug("%s", tb.axi_ram[m].hexdump_str((ram_addr & ~0xf)-16, (((ram_addr & 0xf)+length-1) & ~0xf)+48))
assert tb.axi_ram[m].read(ram_addr, length) == test_data
assert tb.axi_ram[m].read(ram_addr-1, 1) == b'\xaa'
assert tb.axi_ram[m].read(ram_addr+length, 1) == b'\xaa'
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_read(dut, data_in=None, idle_inserter=None, backpressure_inserter=None, size=None, s=0, m=0):
tb = TB(dut)
byte_lanes = tb.axi_master[s].write_if.byte_lanes
max_burst_size = tb.axi_master[s].write_if.max_burst_size
if size is None:
size = max_burst_size
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
for length in list(range(1, byte_lanes*2))+[1024]:
for offset in list(range(byte_lanes, byte_lanes*2))+list(range(4096-byte_lanes, 4096)):
tb.log.info("length %d, offset %d, size %d", length, offset, size)
ram_addr = offset+0x1000
addr = ram_addr + m*0x1000000
test_data = bytearray([x % 256 for x in range(length)])
tb.axi_ram[m].write(ram_addr, test_data)
data = await tb.axi_master[s].read(addr, length, size=size)
assert data.data == test_data
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
await tb.cycle_reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
async def worker(master, offset, aperture, count=16):
for k in range(count):
m = random.randrange(len(tb.axi_ram))
length = random.randint(1, min(512, aperture))
addr = offset+random.randint(0, aperture-length) + m*0x1000000
test_data = bytearray([x % 256 for x in range(length)])
await Timer(random.randint(1, 100), 'ns')
await master.write(addr, test_data)
await Timer(random.randint(1, 100), 'ns')
data = await master.read(addr, length)
assert data.data == test_data
workers = []
for k in range(16):
workers.append(cocotb.start_soon(worker(tb.axi_master[k % len(tb.axi_master)], k*0x1000, 0x1000, count=16)))
while workers:
await workers.pop(0).join()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
if getattr(cocotb, 'top', None) is not None:
s_count = len(cocotb.top.s_axi)
m_count = len(cocotb.top.m_axi)
data_w = len(cocotb.top.s_axi[0].wdata)
byte_lanes = data_w // 8
max_burst_size = (byte_lanes-1).bit_length()
for test in [run_test_write, run_test_read]:
factory = TestFactory(test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
# factory.add_option("size", [None]+list(range(max_burst_size)))
factory.add_option("s", range(min(s_count, 2)))
factory.add_option("m", range(min(m_count, 2)))
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.generate_tests()
# cocotb-test
tests_dir = os.path.abspath(os.path.dirname(__file__))
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'rtl'))
lib_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', 'lib'))
taxi_src_dir = os.path.abspath(os.path.join(lib_dir, 'taxi', 'src'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("data_w", [8, 16, 32])
@pytest.mark.parametrize("m_count", [1, 4])
@pytest.mark.parametrize("s_count", [1, 4])
def test_taxi_axi_interconnect(request, s_count, m_count, data_w):
dut = "taxi_axi_interconnect"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, f"{dut}.f"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['S_COUNT'] = s_count
parameters['M_COUNT'] = m_count
parameters['DATA_W'] = data_w
parameters['ADDR_W'] = 32
parameters['STRB_W'] = parameters['DATA_W'] // 8
parameters['S_ID_W'] = 8
parameters['M_ID_W'] = parameters['S_ID_W']
parameters['AWUSER_EN'] = 0
parameters['AWUSER_W'] = 1
parameters['WUSER_EN'] = 0
parameters['WUSER_W'] = 1
parameters['BUSER_EN'] = 0
parameters['BUSER_W'] = 1
parameters['ARUSER_EN'] = 0
parameters['ARUSER_W'] = 1
parameters['RUSER_EN'] = 0
parameters['RUSER_W'] = 1
parameters['M_REGIONS'] = 1
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,115 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 interconnect testbench
*/
module test_taxi_axi_interconnect #
(
/* verilator lint_off WIDTHTRUNC */
parameter S_COUNT = 4,
parameter M_COUNT = 4,
parameter DATA_W = 32,
parameter ADDR_W = 32,
parameter STRB_W = (DATA_W/8),
parameter S_ID_W = 8,
parameter M_ID_W = S_ID_W,
parameter logic AWUSER_EN = 1'b0,
parameter AWUSER_W = 1,
parameter logic WUSER_EN = 1'b0,
parameter WUSER_W = 1,
parameter logic BUSER_EN = 1'b0,
parameter BUSER_W = 1,
parameter logic ARUSER_EN = 1'b0,
parameter ARUSER_W = 1,
parameter logic RUSER_EN = 1'b0,
parameter RUSER_W = 1,
parameter M_REGIONS = 1,
parameter M_BASE_ADDR = '0,
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
parameter M_CONNECT_RD = {M_COUNT{{S_COUNT{1'b1}}}},
parameter M_CONNECT_WR = {M_COUNT{{S_COUNT{1'b1}}}},
parameter M_SECURE = {M_COUNT{1'b0}}
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axi_if #(
.DATA_W(DATA_W),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.ID_W(S_ID_W),
.AWUSER_EN(AWUSER_EN),
.AWUSER_W(AWUSER_W),
.WUSER_EN(WUSER_EN),
.WUSER_W(WUSER_W),
.BUSER_EN(BUSER_EN),
.BUSER_W(BUSER_W),
.ARUSER_EN(ARUSER_EN),
.ARUSER_W(ARUSER_W),
.RUSER_EN(RUSER_EN),
.RUSER_W(RUSER_W)
) s_axi[S_COUNT]();
taxi_axi_if #(
.DATA_W(DATA_W),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.ID_W(M_ID_W),
.AWUSER_EN(AWUSER_EN),
.AWUSER_W(AWUSER_W),
.WUSER_EN(WUSER_EN),
.WUSER_W(WUSER_W),
.BUSER_EN(BUSER_EN),
.BUSER_W(BUSER_W),
.ARUSER_EN(ARUSER_EN),
.ARUSER_W(ARUSER_W),
.RUSER_EN(RUSER_EN),
.RUSER_W(RUSER_W)
) m_axi[M_COUNT]();
taxi_axi_interconnect #(
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_W(ADDR_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT_RD(M_CONNECT_RD),
.M_CONNECT_WR(M_CONNECT_WR),
.M_SECURE(M_SECURE)
)
uut (
.clk(clk),
.rst(rst),
/*
* AXI4 slave interface
*/
.s_axi_wr(s_axi),
.s_axi_rd(s_axi),
/*
* AXI4 master interface
*/
.m_axi_wr(m_axi),
.m_axi_rd(m_axi)
);
endmodule
`resetall