axis: Add AXI stream arbitrated multiplexer module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-28 23:24:40 -08:00
parent 46e60d32f2
commit 56a3c9f1ba
5 changed files with 829 additions and 0 deletions

View File

@@ -0,0 +1,4 @@
taxi_axis_arb_mux.sv
taxi_axis_if.sv
../prim/taxi_arbiter.sv
../prim/taxi_penc.sv

View File

@@ -0,0 +1,306 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream arbitrated multiplexer
*/
module taxi_axis_arb_mux #
(
// Number of AXI stream inputs
parameter S_COUNT = 4,
// Update tid with routing information
parameter logic UPDATE_TID = 1'b0,
// select round robin arbitration
parameter logic ARB_ROUND_ROBIN = 1'b0,
// LSB priority selection
parameter logic ARB_LSB_HIGH_PRIO = 1'b1
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream inputs (sink)
*/
taxi_axis_if.snk s_axis[S_COUNT],
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam S_ID_W = s_axis.ID_W;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam DEST_W = s_axis.DEST_W;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam USER_W = s_axis.USER_W;
localparam M_ID_W = m_axis.ID_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam S_ID_W_INT = S_ID_W > 0 ? S_ID_W : 1;
// check configuration
if (UPDATE_TID) begin
if (!ID_EN)
$fatal(0, "Error: UPDATE_TID set requires ID_EN set (instance %m)");
if (M_ID_W < CL_S_COUNT)
$fatal(0, "Error: M_ID_W too small for port count (instance %m)");
end
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic [KEEP_W-1:0] m_axis_tstrb_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [M_ID_W-1:0] m_axis_tid_int;
logic [DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
if (S_COUNT == 1) begin
// degenerate case
assign s_axis[0].tready = m_axis_tready_int_reg;
always_comb begin
// pass through selected packet data
m_axis_tdata_int = s_axis[0].tdata;
m_axis_tkeep_int = s_axis[0].tkeep;
m_axis_tstrb_int = s_axis[0].tstrb;
m_axis_tvalid_int = s_axis[0].tvalid && m_axis_tready_int_reg;
m_axis_tlast_int = s_axis[0].tlast;
m_axis_tid_int = M_ID_W'(s_axis[0].tid);
m_axis_tdest_int = s_axis[0].tdest;
m_axis_tuser_int = s_axis[0].tuser;
end
end else begin
wire [S_COUNT-1:0] req;
wire [S_COUNT-1:0] ack;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT-1:0] grant_index;
// input registers to pipeline arbitration delay
logic [DATA_W-1:0] s_axis_tdata_reg[S_COUNT] = '{S_COUNT{'0}};
logic [KEEP_W-1:0] s_axis_tkeep_reg[S_COUNT] = '{S_COUNT{'0}};
logic [KEEP_W-1:0] s_axis_tstrb_reg[S_COUNT] = '{S_COUNT{'0}};
logic [S_COUNT-1:0] s_axis_tvalid_reg = '0;
logic [S_COUNT-1:0] s_axis_tlast_reg = '0;
logic [S_ID_W-1:0] s_axis_tid_reg[S_COUNT] = '{S_COUNT{'0}};
logic [DEST_W-1:0] s_axis_tdest_reg[S_COUNT] = '{S_COUNT{'0}};
logic [USER_W-1:0] s_axis_tuser_reg[S_COUNT] = '{S_COUNT{'0}};
// unpack interface array
wire [S_COUNT-1:0] s_axis_tvalid;
wire [S_COUNT-1:0] s_axis_tready;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axis_tvalid[n] = s_axis[n].tvalid;
assign s_axis[n].tready = s_axis_tready[n];
end
assign s_axis_tready = ~s_axis_tvalid_reg | ({S_COUNT{m_axis_tready_int_reg}} & grant);
// mux for incoming packet
wire [DATA_W-1:0] current_s_tdata = s_axis_tdata_reg[grant_index];
wire [KEEP_W-1:0] current_s_tkeep = s_axis_tkeep_reg[grant_index];
wire [KEEP_W-1:0] current_s_tstrb = s_axis_tstrb_reg[grant_index];
wire current_s_tvalid = s_axis_tvalid_reg[grant_index];
wire current_s_tready = s_axis_tready[grant_index];
wire current_s_tlast = s_axis_tlast_reg[grant_index];
wire [S_ID_W-1:0] current_s_tid = s_axis_tid_reg[grant_index];
wire [DEST_W-1:0] current_s_tdest = s_axis_tdest_reg[grant_index];
wire [USER_W-1:0] current_s_tuser = s_axis_tuser_reg[grant_index];
// arbiter instance
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(ARB_ROUND_ROBIN),
.ARB_BLOCK(1'b1),
.ARB_BLOCK_ACK(1'b1),
.LSB_HIGH_PRIO(ARB_LSB_HIGH_PRIO)
)
arb_inst (
.clk(clk),
.rst(rst),
.req(req),
.ack(ack),
.grant(grant),
.grant_valid(grant_valid),
.grant_index(grant_index)
);
assign req = s_axis_tvalid | (s_axis_tvalid_reg & ~grant);
assign ack = grant & s_axis_tvalid_reg & {S_COUNT{m_axis_tready_int_reg}} & (LAST_EN ? s_axis_tlast_reg : {S_COUNT{1'b1}});
always_comb begin
// pass through selected packet data
m_axis_tdata_int = current_s_tdata;
m_axis_tkeep_int = current_s_tkeep;
m_axis_tstrb_int = current_s_tstrb;
m_axis_tvalid_int = current_s_tvalid && m_axis_tready_int_reg && grant_valid;
m_axis_tlast_int = current_s_tlast;
m_axis_tid_int = M_ID_W'(current_s_tid);
if (UPDATE_TID && S_COUNT > 1) begin
m_axis_tid_int[M_ID_W-1:M_ID_W-CL_S_COUNT] = grant_index;
end
m_axis_tdest_int = current_s_tdest;
m_axis_tuser_int = current_s_tuser;
end
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
always_ff @(posedge clk) begin
// register inputs
if (s_axis_tready[n]) begin
s_axis_tdata_reg[n] <= s_axis[n].tdata;
s_axis_tkeep_reg[n] <= s_axis[n].tkeep;
s_axis_tstrb_reg[n] <= s_axis[n].tstrb;
s_axis_tvalid_reg[n] <= s_axis[n].tvalid;
s_axis_tlast_reg[n] <= s_axis[n].tlast;
s_axis_tid_reg[n] <= s_axis[n].tid;
s_axis_tdest_reg[n] <= s_axis[n].tdest;
s_axis_tuser_reg[n] <= s_axis[n].tuser;
end
if (rst) begin
s_axis_tvalid_reg[n] <= 1'b0;
end
end
end
end
// output datapath logic
logic [DATA_W-1:0] m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] m_axis_tstrb_reg = '0;
logic m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
logic m_axis_tlast_reg = 1'b0;
logic [M_ID_W-1:0] m_axis_tid_reg = '0;
logic [DEST_W-1:0] m_axis_tdest_reg = '0;
logic [USER_W-1:0] m_axis_tuser_reg = '0;
logic [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0;
logic temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
logic temp_m_axis_tlast_reg = 1'b0;
logic [M_ID_W-1:0] temp_m_axis_tid_reg = '0;
logic [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
logic [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
logic store_axis_int_to_output;
logic store_axis_int_to_temp;
logic store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = LAST_EN ? m_axis_tlast_reg : 1'b1;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tstrb_reg <= m_axis_tstrb_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tstrb_reg <= temp_m_axis_tstrb_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tstrb_reg <= m_axis_tstrb_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall

View File

@@ -0,0 +1,61 @@
# SPDX-License-Identifier: CERN-OHL-S-2.0
#
# Copyright (c) 2021-2025 FPGA Ninja, LLC
#
# Authors:
# - Alex Forencich
TOPLEVEL_LANG = verilog
SIM ?= verilator
WAVES ?= 0
COCOTB_HDL_TIMEUNIT = 1ns
COCOTB_HDL_TIMEPRECISION = 1ps
DUT = taxi_axis_arb_mux
COCOTB_TEST_MODULES = test_$(DUT)
COCOTB_TOPLEVEL = test_$(DUT)
MODULE = $(COCOTB_TEST_MODULES)
TOPLEVEL = $(COCOTB_TOPLEVEL)
VERILOG_SOURCES += $(COCOTB_TOPLEVEL).sv
VERILOG_SOURCES += ../../../rtl/axis/$(DUT).f
# handle file list files
process_f_file = $(call process_f_files,$(addprefix $(dir $1),$(shell cat $1)))
process_f_files = $(foreach f,$1,$(if $(filter %.f,$f),$(call process_f_file,$f),$f))
uniq_base = $(if $1,$(call uniq_base,$(foreach f,$1,$(if $(filter-out $(notdir $(lastword $1)),$(notdir $f)),$f,))) $(lastword $1))
VERILOG_SOURCES := $(call uniq_base,$(call process_f_files,$(VERILOG_SOURCES)))
# module parameters
export PARAM_S_COUNT := 4
export PARAM_DATA_W := 8
export PARAM_KEEP_EN := $(shell expr $(PARAM_DATA_W) \> 8 )
export PARAM_KEEP_W := $(shell expr \( $(PARAM_DATA_W) + 7 \) / 8 )
export PARAM_STRB_EN := 0
export PARAM_LAST_EN := 1
export PARAM_ID_EN := 1
export PARAM_S_ID_W := 8
export PARAM_M_ID_W := $(shell python -c "print($(PARAM_S_ID_W) + ($(PARAM_S_COUNT)-1).bit_length())")
export PARAM_DEST_EN := 1
export PARAM_DEST_W := 8
export PARAM_USER_EN := 1
export PARAM_USER_W := 1
export PARAM_UPDATE_TID := 1
export PARAM_ARB_ROUND_ROBIN := 0
export PARAM_ARB_LSB_HIGH_PRIO := 1
ifeq ($(SIM), icarus)
PLUSARGS += -fst
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-P $(COCOTB_TOPLEVEL).$(subst PARAM_,,$(v))=$($(v)))
else ifeq ($(SIM), verilator)
COMPILE_ARGS += $(foreach v,$(filter PARAM_%,$(.VARIABLES)),-G$(subst PARAM_,,$(v))=$($(v)))
ifeq ($(WAVES), 1)
COMPILE_ARGS += --trace-fst
VERILATOR_TRACE = 1
endif
endif
include $(shell cocotb-config --makefiles)/Makefile.sim

View File

@@ -0,0 +1,363 @@
#!/usr/bin/env python
# SPDX-License-Identifier: CERN-OHL-S-2.0
"""
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
"""
import itertools
import logging
import os
import random
import cocotb_test.simulator
import pytest
import cocotb
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Event
from cocotb.regression import TestFactory
from cocotbext.axi import AxiStreamBus, AxiStreamFrame, AxiStreamSource, AxiStreamSink
class TB(object):
def __init__(self, dut):
self.dut = dut
self.log = logging.getLogger("cocotb.tb")
self.log.setLevel(logging.DEBUG)
cocotb.start_soon(Clock(dut.clk, 10, units="ns").start())
self.source = [AxiStreamSource(AxiStreamBus.from_entity(bus), dut.clk, dut.rst) for bus in dut.s_axis]
self.sink = AxiStreamSink(AxiStreamBus.from_entity(dut.m_axis), dut.clk, dut.rst)
def set_idle_generator(self, generator=None):
if generator:
for source in self.source:
source.set_pause_generator(generator())
def set_backpressure_generator(self, generator=None):
if generator:
self.sink.set_pause_generator(generator())
async def reset(self):
self.dut.rst.setimmediatevalue(0)
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 1
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
self.dut.rst.value = 0
await RisingEdge(self.dut.clk)
await RisingEdge(self.dut.clk)
async def run_test(dut, payload_lengths=None, payload_data=None, idle_inserter=None, backpressure_inserter=None, port=0):
tb = TB(dut)
id_width = len(tb.source[0].bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = (len(tb.source)-1).bit_length()
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = []
for test_data in [payload_data(x) for x in payload_lengths()]:
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id | (port << src_shift)
test_frame.tdest = cur_id
test_frames.append(test_frame)
await tb.source[port].send(test_frame)
cur_id = (cur_id + 1) % max_count
for test_frame in test_frames:
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert (rx_frame.tid & id_mask) == test_frame.tid
assert ((rx_frame.tid >> src_shift) & src_mask) == port
assert (rx_frame.tid >> id_width) == port
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_test_tuser_assert(dut, port=0):
tb = TB(dut)
await tb.reset()
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), 32))
test_frame = AxiStreamFrame(test_data, tuser=1)
await tb.source[port].send(test_frame)
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_data
assert rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_arb_test(dut):
tb = TB(dut)
byte_lanes = tb.source[0].byte_lanes
id_width = len(tb.source[0].bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = (len(tb.source)-1).bit_length()
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
test_frames = []
length = byte_lanes*16
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), length))
for k in range(5):
test_frame = AxiStreamFrame(test_data, tx_complete=Event())
src_ind = 0
if k == 0:
src_ind = 0
elif k == 4:
await test_frames[1].tx_complete.wait()
for j in range(8):
await RisingEdge(dut.clk)
src_ind = 0
else:
src_ind = 1
test_frame.tid = cur_id | (src_ind << src_shift)
test_frame.tdest = 0
test_frames.append(test_frame)
await tb.source[src_ind].send(test_frame)
cur_id = (cur_id + 1) % max_count
for k in [0, 1, 2, 4, 3]:
test_frame = test_frames[k]
rx_frame = await tb.sink.recv()
assert rx_frame.tdata == test_frame.tdata
assert (rx_frame.tid & id_mask) == test_frame.tid
assert ((rx_frame.tid >> src_shift) & src_mask) == (rx_frame.tid >> id_width)
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
async def run_stress_test(dut, idle_inserter=None, backpressure_inserter=None):
tb = TB(dut)
byte_lanes = tb.source[0].byte_lanes
id_width = len(tb.source[0].bus.tid)
id_count = 2**id_width
id_mask = id_count-1
src_width = (len(tb.source)-1).bit_length()
src_mask = 2**src_width-1 if src_width else 0
src_shift = id_width-src_width
max_count = 2**src_shift
count_mask = max_count-1
cur_id = 1
await tb.reset()
tb.set_idle_generator(idle_inserter)
tb.set_backpressure_generator(backpressure_inserter)
test_frames = [list() for x in tb.source]
for p in range(len(tb.source)):
for k in range(128):
length = random.randint(1, byte_lanes*16)
test_data = bytearray(itertools.islice(itertools.cycle(range(256)), length))
test_frame = AxiStreamFrame(test_data)
test_frame.tid = cur_id | (p << src_shift)
test_frame.tdest = cur_id
test_frames[p].append(test_frame)
await tb.source[p].send(test_frame)
cur_id = (cur_id + 1) % max_count
while any(test_frames):
rx_frame = await tb.sink.recv()
test_frame = None
for lst in test_frames:
if lst and lst[0].tid == (rx_frame.tid & id_mask):
test_frame = lst.pop(0)
break
assert test_frame is not None
assert rx_frame.tdata == test_frame.tdata
assert (rx_frame.tid & id_mask) == test_frame.tid
assert ((rx_frame.tid >> src_shift) & src_mask) == (rx_frame.tid >> id_width)
assert rx_frame.tdest == test_frame.tdest
assert not rx_frame.tuser
assert tb.sink.empty()
await RisingEdge(dut.clk)
await RisingEdge(dut.clk)
def cycle_pause():
return itertools.cycle([1, 1, 1, 0])
def size_list():
data_width = len(cocotb.top.m_axis.tdata)
byte_width = data_width // 8
return list(range(1, byte_width*4+1))+[512]+[1]*64
def incrementing_payload(length):
return bytearray(itertools.islice(itertools.cycle(range(256)), length))
if cocotb.SIM_NAME:
ports = len(cocotb.top.s_axis)
factory = TestFactory(run_test)
factory.add_option("payload_lengths", [size_list])
factory.add_option("payload_data", [incrementing_payload])
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.add_option("port", list(range(ports)))
factory.generate_tests()
for test in [run_test_tuser_assert]:
factory = TestFactory(test)
factory.add_option("port", list(range(ports)))
factory.generate_tests()
if ports > 1:
factory = TestFactory(run_arb_test)
factory.generate_tests()
factory = TestFactory(run_stress_test)
factory.add_option("idle_inserter", [None, cycle_pause])
factory.add_option("backpressure_inserter", [None, cycle_pause])
factory.generate_tests()
# cocotb-test
tests_dir = os.path.dirname(__file__)
rtl_dir = os.path.abspath(os.path.join(tests_dir, '..', '..', '..', 'rtl'))
def process_f_files(files):
lst = {}
for f in files:
if f[-2:].lower() == '.f':
with open(f, 'r') as fp:
l = fp.read().split()
for f in process_f_files([os.path.join(os.path.dirname(f), x) for x in l]):
lst[os.path.basename(f)] = f
else:
lst[os.path.basename(f)] = f
return list(lst.values())
@pytest.mark.parametrize("round_robin", [0, 1])
@pytest.mark.parametrize("data_w", [8, 16, 32])
@pytest.mark.parametrize("s_count", [1, 4])
def test_taxi_axis_arb_mux(request, s_count, data_w, round_robin):
dut = "taxi_axis_arb_mux"
module = os.path.splitext(os.path.basename(__file__))[0]
toplevel = module
verilog_sources = [
os.path.join(tests_dir, f"{toplevel}.sv"),
os.path.join(rtl_dir, "axis", f"{dut}.f"),
]
verilog_sources = process_f_files(verilog_sources)
parameters = {}
parameters['S_COUNT'] = s_count
parameters['DATA_W'] = data_w
parameters['KEEP_EN'] = int(parameters['DATA_W'] > 8)
parameters['KEEP_W'] = (parameters['DATA_W'] + 7) // 8
parameters['STRB_EN'] = 0
parameters['LAST_EN'] = 1
parameters['ID_EN'] = 1
parameters['S_ID_W'] = 8
parameters['M_ID_W'] = parameters['S_ID_W'] + (s_count-1).bit_length()
parameters['DEST_EN'] = 1
parameters['DEST_W'] = 8
parameters['USER_EN'] = 1
parameters['USER_W'] = 1
parameters['UPDATE_TID'] = 1
parameters['ARB_ROUND_ROBIN'] = round_robin
parameters['ARB_LSB_HIGH_PRIO'] = 1
extra_env = {f'PARAM_{k}': str(v) for k, v in parameters.items()}
sim_build = os.path.join(tests_dir, "sim_build",
request.node.name.replace('[', '-').replace(']', ''))
cocotb_test.simulator.run(
simulator="verilator",
python_search=[tests_dir],
verilog_sources=verilog_sources,
toplevel=toplevel,
module=module,
parameters=parameters,
sim_build=sim_build,
extra_env=extra_env,
)

View File

@@ -0,0 +1,95 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream arbitrated multiplexer testbench
*/
module test_taxi_axis_arb_mux #
(
/* verilator lint_off WIDTHTRUNC */
parameter S_COUNT = 4,
parameter DATA_W = 8,
parameter logic KEEP_EN = (DATA_W>8),
parameter KEEP_W = ((DATA_W+7)/8),
parameter logic STRB_EN = 1'b0,
parameter logic LAST_EN = 1'b1,
parameter logic ID_EN = 1'b0,
parameter S_ID_W = 8,
parameter M_ID_W = S_ID_W+$clog2(S_COUNT),
parameter logic DEST_EN = 1'b0,
parameter DEST_W = 8,
parameter logic USER_EN = 1'b1,
parameter USER_W = 1,
parameter logic UPDATE_TID = 1'b0,
parameter logic ARB_ROUND_ROBIN = 1'b0,
parameter logic ARB_LSB_HIGH_PRIO = 1'b1
/* verilator lint_on WIDTHTRUNC */
)
();
logic clk;
logic rst;
taxi_axis_if #(
.DATA_W(DATA_W),
.KEEP_EN(KEEP_EN),
.KEEP_W(KEEP_W),
.STRB_EN(STRB_EN),
.LAST_EN(LAST_EN),
.ID_EN(ID_EN),
.ID_W(S_ID_W),
.DEST_EN(DEST_EN),
.DEST_W(DEST_W),
.USER_EN(USER_EN),
.USER_W(USER_W)
) s_axis[S_COUNT]();
taxi_axis_if #(
.DATA_W(DATA_W),
.KEEP_EN(KEEP_EN),
.KEEP_W(KEEP_W),
.STRB_EN(STRB_EN),
.LAST_EN(LAST_EN),
.ID_EN(ID_EN),
.ID_W(M_ID_W),
.DEST_EN(DEST_EN),
.DEST_W(DEST_W),
.USER_EN(USER_EN),
.USER_W(USER_W)
) m_axis();
taxi_axis_arb_mux #(
.S_COUNT(S_COUNT),
.UPDATE_TID(UPDATE_TID),
.ARB_ROUND_ROBIN(ARB_ROUND_ROBIN),
.ARB_LSB_HIGH_PRIO(ARB_LSB_HIGH_PRIO)
)
uut (
.clk(clk),
.rst(rst),
/*
* AXI4-Stream input (sink)
*/
.s_axis(s_axis),
/*
* AXI4-Stream output (source)
*/
.m_axis(m_axis)
);
endmodule
`resetall