axis: Add AXI stream arbitrated multiplexer module and testbench

Signed-off-by: Alex Forencich <alex@alexforencich.com>
This commit is contained in:
Alex Forencich
2025-02-28 23:24:40 -08:00
parent 46e60d32f2
commit 56a3c9f1ba
5 changed files with 829 additions and 0 deletions

View File

@@ -0,0 +1,4 @@
taxi_axis_arb_mux.sv
taxi_axis_if.sv
../prim/taxi_arbiter.sv
../prim/taxi_penc.sv

View File

@@ -0,0 +1,306 @@
// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2014-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream arbitrated multiplexer
*/
module taxi_axis_arb_mux #
(
// Number of AXI stream inputs
parameter S_COUNT = 4,
// Update tid with routing information
parameter logic UPDATE_TID = 1'b0,
// select round robin arbitration
parameter logic ARB_ROUND_ROBIN = 1'b0,
// LSB priority selection
parameter logic ARB_LSB_HIGH_PRIO = 1'b1
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-Stream inputs (sink)
*/
taxi_axis_if.snk s_axis[S_COUNT],
/*
* AXI4-Stream output (source)
*/
taxi_axis_if.src m_axis
);
// extract parameters
localparam DATA_W = s_axis.DATA_W;
localparam logic KEEP_EN = s_axis.KEEP_EN && m_axis.KEEP_EN;
localparam KEEP_W = s_axis.KEEP_W;
localparam logic STRB_EN = s_axis.STRB_EN && m_axis.STRB_EN;
localparam logic LAST_EN = s_axis.LAST_EN && m_axis.LAST_EN;
localparam logic ID_EN = s_axis.ID_EN && m_axis.ID_EN;
localparam S_ID_W = s_axis.ID_W;
localparam logic DEST_EN = s_axis.DEST_EN && m_axis.DEST_EN;
localparam DEST_W = s_axis.DEST_W;
localparam logic USER_EN = s_axis.USER_EN && m_axis.USER_EN;
localparam USER_W = s_axis.USER_W;
localparam M_ID_W = m_axis.ID_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam S_ID_W_INT = S_ID_W > 0 ? S_ID_W : 1;
// check configuration
if (UPDATE_TID) begin
if (!ID_EN)
$fatal(0, "Error: UPDATE_TID set requires ID_EN set (instance %m)");
if (M_ID_W < CL_S_COUNT)
$fatal(0, "Error: M_ID_W too small for port count (instance %m)");
end
// internal datapath
logic [DATA_W-1:0] m_axis_tdata_int;
logic [KEEP_W-1:0] m_axis_tkeep_int;
logic [KEEP_W-1:0] m_axis_tstrb_int;
logic m_axis_tvalid_int;
logic m_axis_tready_int_reg = 1'b0;
logic m_axis_tlast_int;
logic [M_ID_W-1:0] m_axis_tid_int;
logic [DEST_W-1:0] m_axis_tdest_int;
logic [USER_W-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
if (S_COUNT == 1) begin
// degenerate case
assign s_axis[0].tready = m_axis_tready_int_reg;
always_comb begin
// pass through selected packet data
m_axis_tdata_int = s_axis[0].tdata;
m_axis_tkeep_int = s_axis[0].tkeep;
m_axis_tstrb_int = s_axis[0].tstrb;
m_axis_tvalid_int = s_axis[0].tvalid && m_axis_tready_int_reg;
m_axis_tlast_int = s_axis[0].tlast;
m_axis_tid_int = M_ID_W'(s_axis[0].tid);
m_axis_tdest_int = s_axis[0].tdest;
m_axis_tuser_int = s_axis[0].tuser;
end
end else begin
wire [S_COUNT-1:0] req;
wire [S_COUNT-1:0] ack;
wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT-1:0] grant_index;
// input registers to pipeline arbitration delay
logic [DATA_W-1:0] s_axis_tdata_reg[S_COUNT] = '{S_COUNT{'0}};
logic [KEEP_W-1:0] s_axis_tkeep_reg[S_COUNT] = '{S_COUNT{'0}};
logic [KEEP_W-1:0] s_axis_tstrb_reg[S_COUNT] = '{S_COUNT{'0}};
logic [S_COUNT-1:0] s_axis_tvalid_reg = '0;
logic [S_COUNT-1:0] s_axis_tlast_reg = '0;
logic [S_ID_W-1:0] s_axis_tid_reg[S_COUNT] = '{S_COUNT{'0}};
logic [DEST_W-1:0] s_axis_tdest_reg[S_COUNT] = '{S_COUNT{'0}};
logic [USER_W-1:0] s_axis_tuser_reg[S_COUNT] = '{S_COUNT{'0}};
// unpack interface array
wire [S_COUNT-1:0] s_axis_tvalid;
wire [S_COUNT-1:0] s_axis_tready;
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
assign s_axis_tvalid[n] = s_axis[n].tvalid;
assign s_axis[n].tready = s_axis_tready[n];
end
assign s_axis_tready = ~s_axis_tvalid_reg | ({S_COUNT{m_axis_tready_int_reg}} & grant);
// mux for incoming packet
wire [DATA_W-1:0] current_s_tdata = s_axis_tdata_reg[grant_index];
wire [KEEP_W-1:0] current_s_tkeep = s_axis_tkeep_reg[grant_index];
wire [KEEP_W-1:0] current_s_tstrb = s_axis_tstrb_reg[grant_index];
wire current_s_tvalid = s_axis_tvalid_reg[grant_index];
wire current_s_tready = s_axis_tready[grant_index];
wire current_s_tlast = s_axis_tlast_reg[grant_index];
wire [S_ID_W-1:0] current_s_tid = s_axis_tid_reg[grant_index];
wire [DEST_W-1:0] current_s_tdest = s_axis_tdest_reg[grant_index];
wire [USER_W-1:0] current_s_tuser = s_axis_tuser_reg[grant_index];
// arbiter instance
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(ARB_ROUND_ROBIN),
.ARB_BLOCK(1'b1),
.ARB_BLOCK_ACK(1'b1),
.LSB_HIGH_PRIO(ARB_LSB_HIGH_PRIO)
)
arb_inst (
.clk(clk),
.rst(rst),
.req(req),
.ack(ack),
.grant(grant),
.grant_valid(grant_valid),
.grant_index(grant_index)
);
assign req = s_axis_tvalid | (s_axis_tvalid_reg & ~grant);
assign ack = grant & s_axis_tvalid_reg & {S_COUNT{m_axis_tready_int_reg}} & (LAST_EN ? s_axis_tlast_reg : {S_COUNT{1'b1}});
always_comb begin
// pass through selected packet data
m_axis_tdata_int = current_s_tdata;
m_axis_tkeep_int = current_s_tkeep;
m_axis_tstrb_int = current_s_tstrb;
m_axis_tvalid_int = current_s_tvalid && m_axis_tready_int_reg && grant_valid;
m_axis_tlast_int = current_s_tlast;
m_axis_tid_int = M_ID_W'(current_s_tid);
if (UPDATE_TID && S_COUNT > 1) begin
m_axis_tid_int[M_ID_W-1:M_ID_W-CL_S_COUNT] = grant_index;
end
m_axis_tdest_int = current_s_tdest;
m_axis_tuser_int = current_s_tuser;
end
for (genvar n = 0; n < S_COUNT; n = n + 1) begin
always_ff @(posedge clk) begin
// register inputs
if (s_axis_tready[n]) begin
s_axis_tdata_reg[n] <= s_axis[n].tdata;
s_axis_tkeep_reg[n] <= s_axis[n].tkeep;
s_axis_tstrb_reg[n] <= s_axis[n].tstrb;
s_axis_tvalid_reg[n] <= s_axis[n].tvalid;
s_axis_tlast_reg[n] <= s_axis[n].tlast;
s_axis_tid_reg[n] <= s_axis[n].tid;
s_axis_tdest_reg[n] <= s_axis[n].tdest;
s_axis_tuser_reg[n] <= s_axis[n].tuser;
end
if (rst) begin
s_axis_tvalid_reg[n] <= 1'b0;
end
end
end
end
// output datapath logic
logic [DATA_W-1:0] m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] m_axis_tstrb_reg = '0;
logic m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
logic m_axis_tlast_reg = 1'b0;
logic [M_ID_W-1:0] m_axis_tid_reg = '0;
logic [DEST_W-1:0] m_axis_tdest_reg = '0;
logic [USER_W-1:0] m_axis_tuser_reg = '0;
logic [DATA_W-1:0] temp_m_axis_tdata_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tkeep_reg = '0;
logic [KEEP_W-1:0] temp_m_axis_tstrb_reg = '0;
logic temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
logic temp_m_axis_tlast_reg = 1'b0;
logic [M_ID_W-1:0] temp_m_axis_tid_reg = '0;
logic [DEST_W-1:0] temp_m_axis_tdest_reg = '0;
logic [USER_W-1:0] temp_m_axis_tuser_reg = '0;
// datapath control
logic store_axis_int_to_output;
logic store_axis_int_to_temp;
logic store_axis_temp_to_output;
assign m_axis.tdata = m_axis_tdata_reg;
assign m_axis.tkeep = KEEP_EN ? m_axis_tkeep_reg : '1;
assign m_axis.tstrb = STRB_EN ? m_axis_tstrb_reg : m_axis.tkeep;
assign m_axis.tvalid = m_axis_tvalid_reg;
assign m_axis.tlast = LAST_EN ? m_axis_tlast_reg : 1'b1;
assign m_axis.tid = ID_EN ? m_axis_tid_reg : '0;
assign m_axis.tdest = DEST_EN ? m_axis_tdest_reg : '0;
assign m_axis.tuser = USER_EN ? m_axis_tuser_reg : '0;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis.tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always_comb begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis.tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis.tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tstrb_reg <= m_axis_tstrb_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tstrb_reg <= temp_m_axis_tstrb_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tstrb_reg <= m_axis_tstrb_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall