Files
taxi/src/axi/rtl/taxi_axil_crossbar_rd.sv
2025-11-12 22:01:45 -08:00

460 lines
13 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2021-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar (read)
*/
module taxi_axil_crossbar_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Address width in bits for address decoding
parameter ADDR_W = 32,
// TODO fix parametrization once verilator issue 5890 is fixed
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_W bits
// set to zero for default addressing based on M_ADDR_W
parameter M_BASE_ADDR = '0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_W = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd16}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4-lite slave interfaces
*/
taxi_axil_if.rd_slv s_axil_rd[S_COUNT],
/*
* AXI4-lite master interfaces
*/
taxi_axil_if.rd_mst m_axil_rd[M_COUNT]
);
// extract parameters
localparam DATA_W = s_axil_rd[0].DATA_W;
localparam S_ADDR_W = s_axil_rd[0].ADDR_W;
localparam STRB_W = s_axil_rd[0].STRB_W;
localparam logic ARUSER_EN = s_axil_rd[0].ARUSER_EN && m_axil_rd[0].ARUSER_EN;
localparam ARUSER_W = s_axil_rd[0].ARUSER_W;
localparam logic RUSER_EN = s_axil_rd[0].RUSER_EN && m_axil_rd[0].RUSER_EN;
localparam RUSER_W = s_axil_rd[0].RUSER_W;
localparam AXIL_M_ADDR_W = m_axil_rd[0].ADDR_W;
localparam CL_S_COUNT = $clog2(S_COUNT);
localparam CL_M_COUNT = $clog2(M_COUNT);
localparam CL_S_COUNT_INT = CL_S_COUNT > 0 ? CL_S_COUNT : 1;
localparam CL_M_COUNT_INT = CL_M_COUNT > 0 ? CL_M_COUNT : 1;
localparam [S_COUNT-1:0][31:0] S_ACCEPT_INT = S_ACCEPT;
localparam [M_COUNT-1:0][31:0] M_ISSUE_INT = M_ISSUE;
// check configuration
if (s_axil_rd[0].ADDR_W != ADDR_W)
$fatal(0, "Error: Interface ADDR_W parameter mismatch (instance %m)");
if (m_axil_rd[0].DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axil_rd[0].STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
wire [ADDR_W-1:0] int_s_axil_araddr[S_COUNT];
wire [2:0] int_s_axil_arprot[S_COUNT];
wire [ARUSER_W-1:0] int_s_axil_aruser[S_COUNT];
logic [M_COUNT-1:0] int_axil_arvalid[S_COUNT];
logic [S_COUNT-1:0] int_axil_arready[M_COUNT];
wire [DATA_W-1:0] int_m_axil_rdata[M_COUNT];
wire [1:0] int_m_axil_rresp[M_COUNT];
wire [RUSER_W-1:0] int_m_axil_ruser[M_COUNT];
logic [S_COUNT-1:0] int_axil_rvalid[M_COUNT];
logic [M_COUNT-1:0] int_axil_rready[S_COUNT];
for (genvar m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
taxi_axil_if #(
.DATA_W(s_axil_rd[0].DATA_W),
.ADDR_W(s_axil_rd[0].ADDR_W),
.STRB_W(s_axil_rd[0].STRB_W),
.ARUSER_EN(s_axil_rd[0].ARUSER_EN),
.ARUSER_W(s_axil_rd[0].ARUSER_W),
.RUSER_EN(s_axil_rd[0].RUSER_EN),
.RUSER_W(s_axil_rd[0].RUSER_W)
) int_axil();
// S side register
taxi_axil_register_rd #(
.AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]),
.R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_rd(s_axil_rd[m]),
/*
* AXI4-Lite master interface
*/
.m_axil_rd(int_axil)
);
// response routing FIFO
localparam FIFO_AW = $clog2(S_ACCEPT_INT[m])+1;
logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = 0;
logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = 0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [CL_M_COUNT_INT-1:0] fifo_select[2**FIFO_AW];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic fifo_decerr[2**FIFO_AW];
wire [CL_M_COUNT_INT-1:0] fifo_wr_select;
wire fifo_wr_decerr;
wire fifo_wr_en;
logic [CL_M_COUNT_INT-1:0] fifo_rd_select_reg = 0;
logic fifo_rd_decerr_reg = 0;
logic fifo_rd_valid_reg = 0;
wire fifo_rd_en;
logic fifo_half_full_reg = 1'b0;
wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg;
integer i;
initial begin
for (i = 0; i < 2**FIFO_AW; i = i + 1) begin
fifo_select[i] = 0;
fifo_decerr[i] = 0;
end
end
always_ff @(posedge clk) begin
if (fifo_wr_en) begin
fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select;
fifo_decerr[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_decerr;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
fifo_rd_valid_reg <= fifo_rd_valid_reg && !fifo_rd_en;
if ((fifo_rd_ptr_reg != fifo_wr_ptr_reg) && (!fifo_rd_valid_reg || fifo_rd_en)) begin
fifo_rd_select_reg <= fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]];
fifo_rd_decerr_reg <= fifo_decerr[fifo_rd_ptr_reg[FIFO_AW-1:0]];
fifo_rd_valid_reg <= 1'b1;
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1);
if (rst) begin
fifo_wr_ptr_reg <= 0;
fifo_rd_ptr_reg <= 0;
fifo_rd_valid_reg <= 1'b0;
end
end
// address decode and admission control
wire [CL_M_COUNT_INT-1:0] a_select;
wire m_axil_avalid;
wire m_axil_aready;
wire [CL_M_COUNT_INT-1:0] m_rc_select;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
taxi_axil_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.SEL_W(CL_M_COUNT_INT),
.ADDR_W(ADDR_W),
.STRB_W(STRB_W),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_W(M_ADDR_W),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(0)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axil_aaddr(int_axil.araddr),
.s_axil_aprot(int_axil.arprot),
.s_axil_avalid(int_axil.arvalid),
.s_axil_aready(int_axil.arready),
/*
* Address output
*/
.m_select(a_select),
.m_axil_avalid(m_axil_avalid),
.m_axil_aready(m_axil_aready),
/*
* Write command output
*/
.m_wc_select(),
.m_wc_decerr(),
.m_wc_valid(),
.m_wc_ready(1'b1),
/*
* Response command output
*/
.m_rc_select(m_rc_select),
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready)
);
assign int_s_axil_araddr[m] = int_axil.araddr;
assign int_s_axil_arprot[m] = int_axil.arprot;
assign int_s_axil_aruser[m] = int_axil.aruser;
always_comb begin
int_axil_arvalid[m] = '0;
int_axil_arvalid[m][a_select] = m_axil_avalid;
end
assign m_axil_aready = int_axil_arready[a_select][m];
// response handling
assign fifo_wr_select = m_rc_select;
assign fifo_wr_decerr = m_rc_decerr;
assign fifo_wr_en = m_rc_valid && !fifo_half_full_reg;
assign m_rc_ready = !fifo_half_full_reg;
// write response handling
wire [CL_M_COUNT_INT-1:0] r_select = M_COUNT > 1 ? fifo_rd_select_reg : '0;
wire r_decerr = fifo_rd_decerr_reg;
wire r_valid = fifo_rd_valid_reg;
// read response mux
assign int_axil.rdata = r_decerr ? '0 : int_m_axil_rdata[r_select];
assign int_axil.rresp = r_decerr ? 2'b11 : int_m_axil_rresp[r_select];
assign int_axil.ruser = r_decerr ? '0 : int_m_axil_ruser[r_select];
assign int_axil.rvalid = (r_decerr ? 1'b1 : int_axil_rvalid[r_select][m]) && r_valid;
always_comb begin
int_axil_rready[m] = '0;
int_axil_rready[m][r_select] = r_valid && int_axil.rready;
end
assign fifo_rd_en = int_axil.rvalid && int_axil.rready && r_valid;
end // s_ifaces
for (genvar n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
taxi_axil_if #(
.DATA_W(m_axil_rd[0].DATA_W),
.ADDR_W(m_axil_rd[0].ADDR_W),
.STRB_W(m_axil_rd[0].STRB_W),
.ARUSER_EN(m_axil_rd[0].ARUSER_EN),
.ARUSER_W(m_axil_rd[0].ARUSER_W),
.RUSER_EN(m_axil_rd[0].RUSER_EN),
.RUSER_W(m_axil_rd[0].RUSER_W)
) int_axil();
// response routing FIFO
localparam FIFO_AW = $clog2(M_ISSUE_INT[n])+1;
logic [FIFO_AW+1-1:0] fifo_wr_ptr_reg = '0;
logic [FIFO_AW+1-1:0] fifo_rd_ptr_reg = '0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
logic [CL_S_COUNT_INT-1:0] fifo_select[2**FIFO_AW];
wire [CL_S_COUNT_INT-1:0] fifo_wr_select;
wire fifo_wr_en;
wire fifo_rd_en;
logic fifo_half_full_reg = 1'b0;
wire fifo_empty = fifo_rd_ptr_reg == fifo_wr_ptr_reg;
initial begin
for (integer i = 0; i < 2**FIFO_AW; i = i + 1) begin
fifo_select[i] = '0;
end
end
always_ff @(posedge clk) begin
if (fifo_wr_en) begin
fifo_select[fifo_wr_ptr_reg[FIFO_AW-1:0]] <= fifo_wr_select;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
if (fifo_rd_en) begin
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
fifo_half_full_reg <= $unsigned(fifo_wr_ptr_reg - fifo_rd_ptr_reg) >= 2**(FIFO_AW-1);
if (rst) begin
fifo_wr_ptr_reg <= '0;
fifo_rd_ptr_reg <= '0;
end
end
// address arbitration
wire [S_COUNT-1:0] a_req;
wire [S_COUNT-1:0] a_ack;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT_INT-1:0] a_grant_index;
if (S_COUNT > 1) begin : arb
taxi_arbiter #(
.PORTS(S_COUNT),
.ARB_ROUND_ROBIN(1),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.LSB_HIGH_PRIO(1)
)
a_arb_inst (
.clk(clk),
.rst(rst),
.req(a_req),
.ack(a_ack),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_index(a_grant_index)
);
end else begin
logic grant_valid_reg = 1'b0;
always @(posedge clk) begin
if (a_req) begin
grant_valid_reg <= 1'b1;
end
if (a_ack || rst) begin
grant_valid_reg <= 1'b0;
end
end
assign a_grant_valid = grant_valid_reg;
assign a_grant = grant_valid_reg;
assign a_grant_index = '0;
end
// address mux
assign int_axil.araddr = AXIL_M_ADDR_W'(int_s_axil_araddr[a_grant_index]);
assign int_axil.arprot = int_s_axil_arprot[a_grant_index];
assign int_axil.aruser = int_s_axil_aruser[a_grant_index];
assign int_axil.arvalid = int_axil_arvalid[a_grant_index][n] && a_grant_valid;
always_comb begin
int_axil_arready[n] = '0;
int_axil_arready[n][a_grant_index] = a_grant_valid && int_axil.arready;
end
for (genvar m = 0; m < S_COUNT; m = m + 1) begin
assign a_req[m] = int_axil_arvalid[m][n] && !a_grant_valid && !fifo_half_full_reg;
assign a_ack[m] = a_grant[m] && int_axil_arvalid[m][n] && int_axil.arready;
end
assign fifo_wr_select = a_grant_index;
assign fifo_wr_en = int_axil.arvalid && int_axil.arready && a_grant_valid;
// read response forwarding
wire [CL_S_COUNT_INT-1:0] r_select = S_COUNT > 1 ? fifo_select[fifo_rd_ptr_reg[FIFO_AW-1:0]] : '0;
assign int_m_axil_rdata[n] = int_axil.rdata;
assign int_m_axil_rresp[n] = int_axil.rresp;
assign int_m_axil_ruser[n] = int_axil.ruser;
always_comb begin
int_axil_rvalid[n] = '0;
int_axil_rvalid[n][r_select] = int_axil.rvalid;
end
assign int_axil.rready = int_axil_rready[r_select][n];
assign fifo_rd_en = int_axil.rvalid && int_axil.rready;
// M side register
taxi_axil_register_rd #(
.AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]),
.R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
/*
* AXI4-Lite slave interface
*/
.s_axil_rd(int_axil),
/*
* AXI4-Lite master interface
*/
.m_axil_rd(m_axil_rd[n])
);
end // m_ifaces
endmodule
`resetall