Files
taxi/rtl/axi/taxi_axi_register_wr.sv
Alex Forencich ae26b61200 axi: Add AXI register module and testbench
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2025-02-26 21:08:39 -08:00

624 lines
22 KiB
Systemverilog

// SPDX-License-Identifier: CERN-OHL-S-2.0
/*
Copyright (c) 2018-2025 FPGA Ninja, LLC
Authors:
- Alex Forencich
*/
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 register (write)
*/
module taxi_axi_register_wr #
(
// AW channel register type
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter AW_REG_TYPE = 1,
// W channel register type
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter W_REG_TYPE = 2,
// B channel register type
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter B_REG_TYPE = 1
)
(
input wire logic clk,
input wire logic rst,
/*
* AXI4 slave interface
*/
taxi_axi_if.wr_slv s_axi_wr,
/*
* AXI4 master interface
*/
taxi_axi_if.wr_mst m_axi_wr
);
// extract parameters
localparam DATA_W = s_axi_wr.DATA_W;
localparam ADDR_W = s_axi_wr.ADDR_W;
localparam STRB_W = s_axi_wr.STRB_W;
localparam ID_W = s_axi_wr.ID_W;
localparam logic AWUSER_EN = s_axi_wr.AWUSER_EN && m_axi_wr.AWUSER_EN;
localparam AWUSER_W = s_axi_wr.AWUSER_W;
localparam logic WUSER_EN = s_axi_wr.WUSER_EN && m_axi_wr.WUSER_EN;
localparam WUSER_W = s_axi_wr.WUSER_W;
localparam logic BUSER_EN = s_axi_wr.BUSER_EN && m_axi_wr.BUSER_EN;
localparam BUSER_W = s_axi_wr.BUSER_W;
if (m_axi_wr.DATA_W != DATA_W)
$fatal(0, "Error: Interface DATA_W parameter mismatch (instance %m)");
if (m_axi_wr.STRB_W != STRB_W)
$fatal(0, "Error: Interface STRB_W parameter mismatch (instance %m)");
// AW channel
if (AW_REG_TYPE > 1) begin
// skid buffer, no bubble cycles
// datapath registers
logic s_axi_awready_reg = 1'b0;
logic [ID_W-1:0] m_axi_awid_reg = '0;
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0;
logic [7:0] m_axi_awlen_reg = '0;
logic [2:0] m_axi_awsize_reg = '0;
logic [1:0] m_axi_awburst_reg = '0;
logic m_axi_awlock_reg = '0;
logic [3:0] m_axi_awcache_reg = '0;
logic [2:0] m_axi_awprot_reg = '0;
logic [3:0] m_axi_awqos_reg = '0;
logic [3:0] m_axi_awregion_reg = '0;
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0;
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
logic [ID_W-1:0] temp_m_axi_awid_reg = '0;
logic [ADDR_W-1:0] temp_m_axi_awaddr_reg = '0;
logic [7:0] temp_m_axi_awlen_reg = '0;
logic [2:0] temp_m_axi_awsize_reg = '0;
logic [1:0] temp_m_axi_awburst_reg = '0;
logic temp_m_axi_awlock_reg = '0;
logic [3:0] temp_m_axi_awcache_reg = '0;
logic [2:0] temp_m_axi_awprot_reg = '0;
logic [3:0] temp_m_axi_awqos_reg = '0;
logic [3:0] temp_m_axi_awregion_reg = '0;
logic [AWUSER_W-1:0] temp_m_axi_awuser_reg = '0;
logic temp_m_axi_awvalid_reg = 1'b0, temp_m_axi_awvalid_next;
// datapath control
logic store_axi_aw_input_to_output;
logic store_axi_aw_input_to_temp;
logic store_axi_aw_temp_to_output;
assign s_axi_wr.awready = s_axi_awready_reg;
assign m_axi_wr.awid = m_axi_awid_reg;
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
assign m_axi_wr.awlen = m_axi_awlen_reg;
assign m_axi_wr.awsize = m_axi_awsize_reg;
assign m_axi_wr.awburst = m_axi_awburst_reg;
assign m_axi_wr.awlock = m_axi_awlock_reg;
assign m_axi_wr.awcache = m_axi_awcache_reg;
assign m_axi_wr.awprot = m_axi_awprot_reg;
assign m_axi_wr.awqos = m_axi_awqos_reg;
assign m_axi_wr.awregion = m_axi_awregion_reg;
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
wire s_axi_awready_early = m_axi_wr.awready || (!temp_m_axi_awvalid_reg && (!m_axi_awvalid_reg || !s_axi_wr.awvalid));
always_comb begin
// transfer sink ready state to source
m_axi_awvalid_next = m_axi_awvalid_reg;
temp_m_axi_awvalid_next = temp_m_axi_awvalid_reg;
store_axi_aw_input_to_output = 1'b0;
store_axi_aw_input_to_temp = 1'b0;
store_axi_aw_temp_to_output = 1'b0;
if (s_axi_awready_reg) begin
// input is ready
if (m_axi_wr.awready || !m_axi_awvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_awvalid_next = s_axi_wr.awvalid;
store_axi_aw_input_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_awvalid_next = s_axi_wr.awvalid;
store_axi_aw_input_to_temp = 1'b1;
end
end else if (m_axi_wr.awready) begin
// input is not ready, but output is ready
m_axi_awvalid_next = temp_m_axi_awvalid_reg;
temp_m_axi_awvalid_next = 1'b0;
store_axi_aw_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
s_axi_awready_reg <= s_axi_awready_early;
m_axi_awvalid_reg <= m_axi_awvalid_next;
temp_m_axi_awvalid_reg <= temp_m_axi_awvalid_next;
// datapath
if (store_axi_aw_input_to_output) begin
m_axi_awid_reg <= s_axi_wr.awid;
m_axi_awaddr_reg <= s_axi_wr.awaddr;
m_axi_awlen_reg <= s_axi_wr.awlen;
m_axi_awsize_reg <= s_axi_wr.awsize;
m_axi_awburst_reg <= s_axi_wr.awburst;
m_axi_awlock_reg <= s_axi_wr.awlock;
m_axi_awcache_reg <= s_axi_wr.awcache;
m_axi_awprot_reg <= s_axi_wr.awprot;
m_axi_awqos_reg <= s_axi_wr.awqos;
m_axi_awregion_reg <= s_axi_wr.awregion;
m_axi_awuser_reg <= s_axi_wr.awuser;
end else if (store_axi_aw_temp_to_output) begin
m_axi_awid_reg <= temp_m_axi_awid_reg;
m_axi_awaddr_reg <= temp_m_axi_awaddr_reg;
m_axi_awlen_reg <= temp_m_axi_awlen_reg;
m_axi_awsize_reg <= temp_m_axi_awsize_reg;
m_axi_awburst_reg <= temp_m_axi_awburst_reg;
m_axi_awlock_reg <= temp_m_axi_awlock_reg;
m_axi_awcache_reg <= temp_m_axi_awcache_reg;
m_axi_awprot_reg <= temp_m_axi_awprot_reg;
m_axi_awqos_reg <= temp_m_axi_awqos_reg;
m_axi_awregion_reg <= temp_m_axi_awregion_reg;
m_axi_awuser_reg <= temp_m_axi_awuser_reg;
end
if (store_axi_aw_input_to_temp) begin
temp_m_axi_awid_reg <= s_axi_wr.awid;
temp_m_axi_awaddr_reg <= s_axi_wr.awaddr;
temp_m_axi_awlen_reg <= s_axi_wr.awlen;
temp_m_axi_awsize_reg <= s_axi_wr.awsize;
temp_m_axi_awburst_reg <= s_axi_wr.awburst;
temp_m_axi_awlock_reg <= s_axi_wr.awlock;
temp_m_axi_awcache_reg <= s_axi_wr.awcache;
temp_m_axi_awprot_reg <= s_axi_wr.awprot;
temp_m_axi_awqos_reg <= s_axi_wr.awqos;
temp_m_axi_awregion_reg <= s_axi_wr.awregion;
temp_m_axi_awuser_reg <= s_axi_wr.awuser;
end
if (rst) begin
s_axi_awready_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
temp_m_axi_awvalid_reg <= 1'b0;
end
end
end else if (AW_REG_TYPE == 1) begin
// simple register, inserts bubble cycles
// datapath registers
logic s_axi_awready_reg = 1'b0;
logic [ID_W-1:0] m_axi_awid_reg = '0;
logic [ADDR_W-1:0] m_axi_awaddr_reg = '0;
logic [7:0] m_axi_awlen_reg = '0;
logic [2:0] m_axi_awsize_reg = '0;
logic [1:0] m_axi_awburst_reg = '0;
logic m_axi_awlock_reg = '0;
logic [3:0] m_axi_awcache_reg = '0;
logic [2:0] m_axi_awprot_reg = '0;
logic [3:0] m_axi_awqos_reg = '0;
logic [3:0] m_axi_awregion_reg = '0;
logic [AWUSER_W-1:0] m_axi_awuser_reg = '0;
logic m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
// datapath control
logic store_axi_aw_input_to_output;
assign s_axi_wr.awready = s_axi_awready_reg;
assign m_axi_wr.awid = m_axi_awid_reg;
assign m_axi_wr.awaddr = m_axi_awaddr_reg;
assign m_axi_wr.awlen = m_axi_awlen_reg;
assign m_axi_wr.awsize = m_axi_awsize_reg;
assign m_axi_wr.awburst = m_axi_awburst_reg;
assign m_axi_wr.awlock = m_axi_awlock_reg;
assign m_axi_wr.awcache = m_axi_awcache_reg;
assign m_axi_wr.awprot = m_axi_awprot_reg;
assign m_axi_wr.awqos = m_axi_awqos_reg;
assign m_axi_wr.awregion = m_axi_awregion_reg;
assign m_axi_wr.awuser = AWUSER_EN ? m_axi_awuser_reg : '0;
assign m_axi_wr.awvalid = m_axi_awvalid_reg;
// enable ready input next cycle if output buffer will be empty
wire s_axi_awready_eawly = !m_axi_awvalid_next;
always_comb begin
// transfer sink ready state to source
m_axi_awvalid_next = m_axi_awvalid_reg;
store_axi_aw_input_to_output = 1'b0;
if (s_axi_awready_reg) begin
m_axi_awvalid_next = s_axi_wr.awvalid;
store_axi_aw_input_to_output = 1'b1;
end else if (m_axi_wr.awready) begin
m_axi_awvalid_next = 1'b0;
end
end
always_ff @(posedge clk) begin
s_axi_awready_reg <= s_axi_awready_eawly;
m_axi_awvalid_reg <= m_axi_awvalid_next;
// datapath
if (store_axi_aw_input_to_output) begin
m_axi_awid_reg <= s_axi_wr.awid;
m_axi_awaddr_reg <= s_axi_wr.awaddr;
m_axi_awlen_reg <= s_axi_wr.awlen;
m_axi_awsize_reg <= s_axi_wr.awsize;
m_axi_awburst_reg <= s_axi_wr.awburst;
m_axi_awlock_reg <= s_axi_wr.awlock;
m_axi_awcache_reg <= s_axi_wr.awcache;
m_axi_awprot_reg <= s_axi_wr.awprot;
m_axi_awqos_reg <= s_axi_wr.awqos;
m_axi_awregion_reg <= s_axi_wr.awregion;
m_axi_awuser_reg <= s_axi_wr.awuser;
end
if (rst) begin
s_axi_awready_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
end
end
end else begin
// bypass AW channel
assign m_axi_wr.awid = s_axi_wr.awid;
assign m_axi_wr.awaddr = s_axi_wr.awaddr;
assign m_axi_wr.awlen = s_axi_wr.awlen;
assign m_axi_wr.awsize = s_axi_wr.awsize;
assign m_axi_wr.awburst = s_axi_wr.awburst;
assign m_axi_wr.awlock = s_axi_wr.awlock;
assign m_axi_wr.awcache = s_axi_wr.awcache;
assign m_axi_wr.awprot = s_axi_wr.awprot;
assign m_axi_wr.awqos = s_axi_wr.awqos;
assign m_axi_wr.awregion = s_axi_wr.awregion;
assign m_axi_wr.awuser = AWUSER_EN ? s_axi_wr.awuser : '0;
assign m_axi_wr.awvalid = s_axi_wr.awvalid;
assign s_axi_wr.awready = m_axi_wr.awready;
end
// W channel
if (W_REG_TYPE > 1) begin
// skid buffer, no bubble cycles
// datapath registers
logic s_axi_wready_reg = 1'b0;
logic [DATA_W-1:0] m_axi_wdata_reg = '0;
logic [STRB_W-1:0] m_axi_wstrb_reg = '0;
logic m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] m_axi_wuser_reg = '0;
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
logic [DATA_W-1:0] temp_m_axi_wdata_reg = '0;
logic [STRB_W-1:0] temp_m_axi_wstrb_reg = '0;
logic temp_m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] temp_m_axi_wuser_reg = '0;
logic temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
logic store_axi_w_input_to_output;
logic store_axi_w_input_to_temp;
logic store_axi_w_temp_to_output;
assign s_axi_wr.wready = s_axi_wready_reg;
assign m_axi_wr.wdata = m_axi_wdata_reg;
assign m_axi_wr.wstrb = m_axi_wstrb_reg;
assign m_axi_wr.wlast = m_axi_wlast_reg;
assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0;
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
wire s_axi_wready_early = m_axi_wr.wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !s_axi_wr.wvalid));
always_comb begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_input_to_output = 1'b0;
store_axi_w_input_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (s_axi_wready_reg) begin
// input is ready
if (m_axi_wr.wready || !m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = s_axi_wr.wvalid;
store_axi_w_input_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = s_axi_wr.wvalid;
store_axi_w_input_to_temp = 1'b1;
end
end else if (m_axi_wr.wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
s_axi_wready_reg <= s_axi_wready_early;
m_axi_wvalid_reg <= m_axi_wvalid_next;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
// datapath
if (store_axi_w_input_to_output) begin
m_axi_wdata_reg <= s_axi_wr.wdata;
m_axi_wstrb_reg <= s_axi_wr.wstrb;
m_axi_wlast_reg <= s_axi_wr.wlast;
m_axi_wuser_reg <= s_axi_wr.wuser;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
m_axi_wuser_reg <= temp_m_axi_wuser_reg;
end
if (store_axi_w_input_to_temp) begin
temp_m_axi_wdata_reg <= s_axi_wr.wdata;
temp_m_axi_wstrb_reg <= s_axi_wr.wstrb;
temp_m_axi_wlast_reg <= s_axi_wr.wlast;
temp_m_axi_wuser_reg <= s_axi_wr.wuser;
end
if (rst) begin
s_axi_wready_reg <= 1'b0;
m_axi_wvalid_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end
end
end else if (W_REG_TYPE == 1) begin
// simple register, inserts bubble cycles
// datapath registers
logic s_axi_wready_reg = 1'b0;
logic [DATA_W-1:0] m_axi_wdata_reg = '0;
logic [STRB_W-1:0] m_axi_wstrb_reg = '0;
logic m_axi_wlast_reg = 1'b0;
logic [WUSER_W-1:0] m_axi_wuser_reg = '0;
logic m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
// datapath control
logic store_axi_w_input_to_output;
assign s_axi_wr.wready = s_axi_wready_reg;
assign m_axi_wr.wdata = m_axi_wdata_reg;
assign m_axi_wr.wstrb = m_axi_wstrb_reg;
assign m_axi_wr.wlast = m_axi_wlast_reg;
assign m_axi_wr.wuser = WUSER_EN ? m_axi_wuser_reg : '0;
assign m_axi_wr.wvalid = m_axi_wvalid_reg;
// enable ready input next cycle if output buffer will be empty
wire s_axi_wready_ewly = !m_axi_wvalid_next;
always_comb begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
store_axi_w_input_to_output = 1'b0;
if (s_axi_wready_reg) begin
m_axi_wvalid_next = s_axi_wr.wvalid;
store_axi_w_input_to_output = 1'b1;
end else if (m_axi_wr.wready) begin
m_axi_wvalid_next = 1'b0;
end
end
always_ff @(posedge clk) begin
s_axi_wready_reg <= s_axi_wready_ewly;
m_axi_wvalid_reg <= m_axi_wvalid_next;
// datapath
if (store_axi_w_input_to_output) begin
m_axi_wdata_reg <= s_axi_wr.wdata;
m_axi_wstrb_reg <= s_axi_wr.wstrb;
m_axi_wlast_reg <= s_axi_wr.wlast;
m_axi_wuser_reg <= s_axi_wr.wuser;
end
if (rst) begin
s_axi_wready_reg <= 1'b0;
m_axi_wvalid_reg <= 1'b0;
end
end
end else begin
// bypass W channel
assign m_axi_wr.wdata = s_axi_wr.wdata;
assign m_axi_wr.wstrb = s_axi_wr.wstrb;
assign m_axi_wr.wlast = s_axi_wr.wlast;
assign m_axi_wr.wuser = WUSER_EN ? s_axi_wr.wuser : '0;
assign m_axi_wr.wvalid = s_axi_wr.wvalid;
assign s_axi_wr.wready = m_axi_wr.wready;
end
// B channel
if (B_REG_TYPE > 1) begin
// skid buffer, no bubble cycles
// datapath registers
logic m_axi_bready_reg = 1'b0;
logic [ID_W-1:0] s_axi_bid_reg = '0;
logic [1:0] s_axi_bresp_reg = 2'b0;
logic [BUSER_W-1:0] s_axi_buser_reg = '0;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
logic [ID_W-1:0] temp_s_axi_bid_reg = '0;
logic [1:0] temp_s_axi_bresp_reg = 2'b0;
logic [BUSER_W-1:0] temp_s_axi_buser_reg = '0;
logic temp_s_axi_bvalid_reg = 1'b0, temp_s_axi_bvalid_next;
// datapath control
logic store_axi_b_input_to_output;
logic store_axi_b_input_to_temp;
logic store_axi_b_temp_to_output;
assign m_axi_wr.bready = m_axi_bready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
wire m_axi_bready_early = s_axi_wr.bready || (!temp_s_axi_bvalid_reg && (!s_axi_bvalid_reg || !m_axi_wr.bvalid));
always_comb begin
// transfer sink ready state to source
s_axi_bvalid_next = s_axi_bvalid_reg;
temp_s_axi_bvalid_next = temp_s_axi_bvalid_reg;
store_axi_b_input_to_output = 1'b0;
store_axi_b_input_to_temp = 1'b0;
store_axi_b_temp_to_output = 1'b0;
if (m_axi_bready_reg) begin
// input is ready
if (s_axi_wr.bready || !s_axi_bvalid_reg) begin
// output is ready or currently not valid, transfer data to output
s_axi_bvalid_next = m_axi_wr.bvalid;
store_axi_b_input_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_s_axi_bvalid_next = m_axi_wr.bvalid;
store_axi_b_input_to_temp = 1'b1;
end
end else if (s_axi_wr.bready) begin
// input is not ready, but output is ready
s_axi_bvalid_next = temp_s_axi_bvalid_reg;
temp_s_axi_bvalid_next = 1'b0;
store_axi_b_temp_to_output = 1'b1;
end
end
always_ff @(posedge clk) begin
m_axi_bready_reg <= m_axi_bready_early;
s_axi_bvalid_reg <= s_axi_bvalid_next;
temp_s_axi_bvalid_reg <= temp_s_axi_bvalid_next;
// datapath
if (store_axi_b_input_to_output) begin
s_axi_bid_reg <= m_axi_wr.bid;
s_axi_bresp_reg <= m_axi_wr.bresp;
s_axi_buser_reg <= m_axi_wr.buser;
end else if (store_axi_b_temp_to_output) begin
s_axi_bid_reg <= temp_s_axi_bid_reg;
s_axi_bresp_reg <= temp_s_axi_bresp_reg;
s_axi_buser_reg <= temp_s_axi_buser_reg;
end
if (store_axi_b_input_to_temp) begin
temp_s_axi_bid_reg <= m_axi_wr.bid;
temp_s_axi_bresp_reg <= m_axi_wr.bresp;
temp_s_axi_buser_reg <= m_axi_wr.buser;
end
if (rst) begin
m_axi_bready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
temp_s_axi_bvalid_reg <= 1'b0;
end
end
end else if (B_REG_TYPE == 1) begin
// simple register, inserts bubble cycles
// datapath registers
logic m_axi_bready_reg = 1'b0;
logic [ID_W-1:0] s_axi_bid_reg = '0;
logic [1:0] s_axi_bresp_reg = 2'b0;
logic [BUSER_W-1:0] s_axi_buser_reg = '0;
logic s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
// datapath control
logic store_axi_b_input_to_output;
assign m_axi_wr.bready = m_axi_bready_reg;
assign s_axi_wr.bid = s_axi_bid_reg;
assign s_axi_wr.bresp = s_axi_bresp_reg;
assign s_axi_wr.buser = BUSER_EN ? s_axi_buser_reg : '0;
assign s_axi_wr.bvalid = s_axi_bvalid_reg;
// enable ready input next cycle if output buffer will be empty
wire m_axi_bready_early = !s_axi_bvalid_next;
always_comb begin
// transfer sink ready state to source
s_axi_bvalid_next = s_axi_bvalid_reg;
store_axi_b_input_to_output = 1'b0;
if (m_axi_bready_reg) begin
s_axi_bvalid_next = m_axi_wr.bvalid;
store_axi_b_input_to_output = 1'b1;
end else if (s_axi_wr.bready) begin
s_axi_bvalid_next = 1'b0;
end
end
always_ff @(posedge clk) begin
m_axi_bready_reg <= m_axi_bready_early;
s_axi_bvalid_reg <= s_axi_bvalid_next;
// datapath
if (store_axi_b_input_to_output) begin
s_axi_bid_reg <= m_axi_wr.bid;
s_axi_bresp_reg <= m_axi_wr.bresp;
s_axi_buser_reg <= m_axi_wr.buser;
end
if (rst) begin
m_axi_bready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
end
end
end else begin
// bypass B channel
assign s_axi_wr.bid = m_axi_wr.bid;
assign s_axi_wr.bresp = m_axi_wr.bresp;
assign s_axi_wr.buser = BUSER_EN ? m_axi_wr.buser : '0;
assign s_axi_wr.bvalid = m_axi_wr.bvalid;
assign m_axi_wr.bready = s_axi_wr.bready;
end
endmodule
`resetall